Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the co...Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the coupled KdV and mKdV equations,which may depict the development of shallow water waves,the optical soliton propagation in cubic nonlinear media and the Alfven wave in a cold collision-free plasma.Secondly,the discrete generalized(r,N-r)-fold Darboux transformation is constructed and extended to solve this discrete coupled equation with the fourth-order linear spectral problem,from which diverse exact solutions including usual multi-soliton and semi-rational soliton solutions on the vanishing background,higher-order rational soliton and mixed hyperbolic-rational soliton solutions on the non-vanishing background are derived,and the limit states of some soliton and rational soliton solutions are analyzed by the asymptotic analysis technique.Finally,the numerical simulations are used to explore the dynamical behaviors of some exact soliton solutions.These results may be helpful for understanding some physical phenomena in fields of shallow water wave,optics,and plasma physics.展开更多
In this paper, we consider small perturbations of the KdV-mKdV equation u_t =-u_(xxx) + 6 uu_x + 6 u^2 u_x on the real line with periodic boundary conditions. It is shown that the above equation admits a Cantor family...In this paper, we consider small perturbations of the KdV-mKdV equation u_t =-u_(xxx) + 6 uu_x + 6 u^2 u_x on the real line with periodic boundary conditions. It is shown that the above equation admits a Cantor family of small amplitude quasi-periodic solutions under such perturbations. The proof is based on an abstract infinite dimensional KAM theorem.展开更多
In this paper, the MKdV equation with nonuniformity terms is discussed. It relates to the eigenvalue problem The evolution laws of scattering data for (1. 3) are derived and the inverse scattering solutions-soliton so...In this paper, the MKdV equation with nonuniformity terms is discussed. It relates to the eigenvalue problem The evolution laws of scattering data for (1. 3) are derived and the inverse scattering solutions-soliton solutions of eq(1. 1) are obtained. In the end of the paper, the single soliton solution and Double soliton solution are discussed. The result extends the situation in [1].展开更多
In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzent...In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.展开更多
Some new exact solutions of an auxiliary ordinary differential equation are obtained, which were neglected by Sirendaoreji et al in their auxiliary equation method. By using this method and these new solutions the com...Some new exact solutions of an auxiliary ordinary differential equation are obtained, which were neglected by Sirendaoreji et al in their auxiliary equation method. By using this method and these new solutions the combined Korteweg-de Vries (KdV) and modified KdV (mKdV) equation and (2+1)-dimensional Broer-Kaup-Kupershmidt system are investigated and abundant exact travelling wave solutions are obtained that include new solitary wave solutions and triangular periodic wave solutions.展开更多
Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Pain...Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Painlev'e expansion method by introducing an intermediate expansion method. Then the generalized (G′/G)-(G/G′) expansion method is naturally derived from the standpoint of the nonstandard truncated Painlev'e expansion. The application of the generalized method to the mKdV equation shows that it extends the range of exact solutions obtained by using the ( G′/ G)-expansion method.展开更多
In this letter, we study discretized mKdV lattice equation by using a new generalized ansatz. As a result,many explicit rational exact solutions, including some new solitary wave solutions, are obtained by symbolic co...In this letter, we study discretized mKdV lattice equation by using a new generalized ansatz. As a result,many explicit rational exact solutions, including some new solitary wave solutions, are obtained by symbolic computation code Maple.展开更多
The modify Korteweg-de Vries(mKdV) equations,governing the evolution of the amplitude of solitary Rossby waves,are derived from quasi-geostrophic vorticity equation by using the perturbation method.The result manifest...The modify Korteweg-de Vries(mKdV) equations,governing the evolution of the amplitude of solitary Rossby waves,are derived from quasi-geostrophic vorticity equation by using the perturbation method.The result manifests that the linear topography effect with the change of latitude can induce solitary Rossby wave.展开更多
In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann the...In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function, then the one and two periodic wave solutions are presented~ and it is also shown that the soliton solutions can be reduced from the periodic wave solutions.展开更多
N-soliton solutions of the hierarchy of non-isospectral mKdV equation with self-consistent sources andthe hierarchy of non-isospectral sine-Gordon equation with self-consistent sources are obtained via the inverse sca...N-soliton solutions of the hierarchy of non-isospectral mKdV equation with self-consistent sources andthe hierarchy of non-isospectral sine-Gordon equation with self-consistent sources are obtained via the inverse scatteringtransform.展开更多
In this paper, the improved Jacobian elliptic function expansion approach is extended and applied to constructing discrete solutions of the semi-discrete coupled modified Korteweg de Vries (mKdV) equations with the ...In this paper, the improved Jacobian elliptic function expansion approach is extended and applied to constructing discrete solutions of the semi-discrete coupled modified Korteweg de Vries (mKdV) equations with the aid of the symbolic computation system Maple. Some new discrete Jacobian doubly periodic solutions are obtained. When the modulus m →1, these doubly periodic solutions degenerate into the corresponding solitary wave solutions, including kink-type, bell-type and other types of excitations.展开更多
In this paper, we apply homotopy analysis method to solve discrete mKdV equation and successfully obtain the bell-shaped solitary solution to mKdV equation. Comparison between our solution and the exact solution shows...In this paper, we apply homotopy analysis method to solve discrete mKdV equation and successfully obtain the bell-shaped solitary solution to mKdV equation. Comparison between our solution and the exact solution shows that homotopy analysis method is effective and validity in solving hybrid nonlinear problems, including solitary solution of difference-differential equation.展开更多
Hamiltonian formalism of the mKdV equation with non-vanishing boundary valueis re-examined by a revised form of the standard procedure. It is known that the previous papers did not give the final results and involved ...Hamiltonian formalism of the mKdV equation with non-vanishing boundary valueis re-examined by a revised form of the standard procedure. It is known that the previous papers did not give the final results and involved some questionable points [T.C. Au Yeung and P.C.W. Fung, J. Phys. A 21 (1988) 3575]. In this note, simple results are obtained in terms of an affine parameter and a Galileo transformation is introduced to ensure the results compatible with those derived from the inverse scattering transform.展开更多
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact sol...By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact solutions including some new formal solutions are successfully picked up for the mKdV-sinh-Gordon equation by this approach.展开更多
In this paper,modified Korteweg-de Vries (mKdV) equations for the amplitude of solitary Rossby waves in stratified fluids with a zonal shear flow are derived by using a weakly nonlinear method.It is found that the coe...In this paper,modified Korteweg-de Vries (mKdV) equations for the amplitude of solitary Rossby waves in stratified fluids with a zonal shear flow are derived by using a weakly nonlinear method.It is found that the coefficients of mKdV equations depend not only on the β effect and the Visl-Brunt frequency,but also on the basic shear flow.展开更多
This paper applies the variational iteration method to obtain approximate analytic solutions of a generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) equation and a coupled modified Korteweg-de Vries (mKdV)...This paper applies the variational iteration method to obtain approximate analytic solutions of a generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) equation and a coupled modified Korteweg-de Vries (mKdV) equation. This method provides a sequence Of functions which converges to the exact solution of the problem and is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Some examples are given to demonstrate the reliability and convenience of the method and comparisons are made with the exact solutions.展开更多
In this article, we investigate the initial value problem(IVP) associated with the defocusing nonlinear wave equation on R^2 as follows:{δttu-△u=-u^3 u(0,x)=u0(x),δtu*(0,x)=u1(x,)where the initial data ...In this article, we investigate the initial value problem(IVP) associated with the defocusing nonlinear wave equation on R^2 as follows:{δttu-△u=-u^3 u(0,x)=u0(x),δtu*(0,x)=u1(x,)where the initial data (uo,ul)∈H^s-1(R^2)It is shown that the IVP is global well-posedness in H^s(R^2)×H^s-1×H^s-1(R^2)for any 1 〉 s 〉2/5.The proof relies upon the almost conserved quantity in using multilinear correction term. The main difficulty is to control the growth of the variation of the almost conserved quantity. Finally, we utilize linear-nonlinear decomposition benefited from the ideas of Roy [1].展开更多
The equation of electromagnetic wave propagation through cold collisionless plasma can be reduced to the modified Kortweg-de Vries (mKdV) equation. Using a new technique, whose keys are the trial solution in terms o...The equation of electromagnetic wave propagation through cold collisionless plasma can be reduced to the modified Kortweg-de Vries (mKdV) equation. Using a new technique, whose keys are the trial solution in terms of the exponential function and the ideas of the like-terms' balance, some groups of accurate analytical solutions for this mKdV equation, such as solitary wave solutions, can be obtained. It is successfully shown that this method may be still valid for solving other nonlinear plasma equations.展开更多
This paper obtains some solutions of the 5th-order mKdV equation by using the exponential-fraction trial function method, such as solitary wave solutions, shock wave solutions and the hopping wave solutions. It succes...This paper obtains some solutions of the 5th-order mKdV equation by using the exponential-fraction trial function method, such as solitary wave solutions, shock wave solutions and the hopping wave solutions. It successfully shows that this method may be valid for solving other nonlinear partial differential equations.展开更多
The approximate direct reduction method is applied to the perturbed mKdV equation with weak fourth order dispersion and weak dissipation. The similarity reduction solutions of different orders conform to formal cohere...The approximate direct reduction method is applied to the perturbed mKdV equation with weak fourth order dispersion and weak dissipation. The similarity reduction solutions of different orders conform to formal coherence, accounting for infinite series reduction solutions to the original equation and general formulas of similarity reduction equations. Painleve Ⅱ type equations, hyperbolic secant and Jacobi elliptic function solutions are obtained for zeroorder similarity reduction equations. Higher order similarity reduction equations are linear variable coefficient ordinary differential equations.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.12071042)Beijing Natural Science Foundation (Grant No.1202006)。
文摘Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the coupled KdV and mKdV equations,which may depict the development of shallow water waves,the optical soliton propagation in cubic nonlinear media and the Alfven wave in a cold collision-free plasma.Secondly,the discrete generalized(r,N-r)-fold Darboux transformation is constructed and extended to solve this discrete coupled equation with the fourth-order linear spectral problem,from which diverse exact solutions including usual multi-soliton and semi-rational soliton solutions on the vanishing background,higher-order rational soliton and mixed hyperbolic-rational soliton solutions on the non-vanishing background are derived,and the limit states of some soliton and rational soliton solutions are analyzed by the asymptotic analysis technique.Finally,the numerical simulations are used to explore the dynamical behaviors of some exact soliton solutions.These results may be helpful for understanding some physical phenomena in fields of shallow water wave,optics,and plasma physics.
基金Supported by NSFC(11601036,11401041)Science and Technology Foundation of Shandong Province(J16LI52)
文摘In this paper, we consider small perturbations of the KdV-mKdV equation u_t =-u_(xxx) + 6 uu_x + 6 u^2 u_x on the real line with periodic boundary conditions. It is shown that the above equation admits a Cantor family of small amplitude quasi-periodic solutions under such perturbations. The proof is based on an abstract infinite dimensional KAM theorem.
文摘In this paper, the MKdV equation with nonuniformity terms is discussed. It relates to the eigenvalue problem The evolution laws of scattering data for (1. 3) are derived and the inverse scattering solutions-soliton solutions of eq(1. 1) are obtained. In the end of the paper, the single soliton solution and Double soliton solution are discussed. The result extends the situation in [1].
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006), the High Education Science Research Program (Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University (Grant No QN005023).
文摘In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.
基金Project supported by the National Natural Science Foundation of China (Grant No 10472029).
文摘Some new exact solutions of an auxiliary ordinary differential equation are obtained, which were neglected by Sirendaoreji et al in their auxiliary equation method. By using this method and these new solutions the combined Korteweg-de Vries (KdV) and modified KdV (mKdV) equation and (2+1)-dimensional Broer-Kaup-Kupershmidt system are investigated and abundant exact travelling wave solutions are obtained that include new solitary wave solutions and triangular periodic wave solutions.
基金Project supported by the National Key Basic Research Project of China (Grant No. 2004CB318000)the National Natural Science Foundation of China (Grant No. 10771072)
文摘Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Painlev'e expansion method by introducing an intermediate expansion method. Then the generalized (G′/G)-(G/G′) expansion method is naturally derived from the standpoint of the nonstandard truncated Painlev'e expansion. The application of the generalized method to the mKdV equation shows that it extends the range of exact solutions obtained by using the ( G′/ G)-expansion method.
基金the National Key Basic Research Project of China under
文摘In this letter, we study discretized mKdV lattice equation by using a new generalized ansatz. As a result,many explicit rational exact solutions, including some new solitary wave solutions, are obtained by symbolic computation code Maple.
基金The project sponsored by the Education Depart ment of Inner Mongolia(NJZY:08005,NJ:09066)Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences(Grant No.KLOOCAW0805)the Science of Inner Mongolia University of Technology(X200933)
文摘The modify Korteweg-de Vries(mKdV) equations,governing the evolution of the amplitude of solitary Rossby waves,are derived from quasi-geostrophic vorticity equation by using the perturbation method.The result manifests that the linear topography effect with the change of latitude can induce solitary Rossby wave.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10771196 and 10831003)the Innovation Project of Zhejiang Province of China(Grant No.T200905)
文摘In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function, then the one and two periodic wave solutions are presented~ and it is also shown that the soliton solutions can be reduced from the periodic wave solutions.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10371070,10671121the Foundation of Shanghai Education Committee for Shanghai Prospective Excellent Young Teachers+1 种基金Shanghai Leading Academic Discipline Project under Grant No.J50101 the President Foundation of East China Institute of Technology under Grant No.DHXK0810
文摘N-soliton solutions of the hierarchy of non-isospectral mKdV equation with self-consistent sources andthe hierarchy of non-isospectral sine-Gordon equation with self-consistent sources are obtained via the inverse scatteringtransform.
基金Project supported by the National Natural Science Foundation of China (Grant No 10272071) and the Natural Science Foundation of Zhejiang Lishui University of China (Grant Nos KZ05004 and KY06024).
文摘In this paper, the improved Jacobian elliptic function expansion approach is extended and applied to constructing discrete solutions of the semi-discrete coupled modified Korteweg de Vries (mKdV) equations with the aid of the symbolic computation system Maple. Some new discrete Jacobian doubly periodic solutions are obtained. When the modulus m →1, these doubly periodic solutions degenerate into the corresponding solitary wave solutions, including kink-type, bell-type and other types of excitations.
基金the State Key Basic Research Program of China under Grant No.2004CB318000
文摘In this paper, we apply homotopy analysis method to solve discrete mKdV equation and successfully obtain the bell-shaped solitary solution to mKdV equation. Comparison between our solution and the exact solution shows that homotopy analysis method is effective and validity in solving hybrid nonlinear problems, including solitary solution of difference-differential equation.
文摘Hamiltonian formalism of the mKdV equation with non-vanishing boundary valueis re-examined by a revised form of the standard procedure. It is known that the previous papers did not give the final results and involved some questionable points [T.C. Au Yeung and P.C.W. Fung, J. Phys. A 21 (1988) 3575]. In this note, simple results are obtained in terms of an affine parameter and a Galileo transformation is introduced to ensure the results compatible with those derived from the inverse scattering transform.
基金Project supported by the National Natural Science Foundation of China (Grant No 10672053)
文摘By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact solutions including some new formal solutions are successfully picked up for the mKdV-sinh-Gordon equation by this approach.
基金supported by the Scientific Research Foundation for the Returned Over-seas Chinese Scholarthe Natural Science Foundation of the Inner Mongolia(No.20040802112)
文摘In this paper,modified Korteweg-de Vries (mKdV) equations for the amplitude of solitary Rossby waves in stratified fluids with a zonal shear flow are derived by using a weakly nonlinear method.It is found that the coefficients of mKdV equations depend not only on the β effect and the Visl-Brunt frequency,but also on the basic shear flow.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10771019 and 10826107)
文摘This paper applies the variational iteration method to obtain approximate analytic solutions of a generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) equation and a coupled modified Korteweg-de Vries (mKdV) equation. This method provides a sequence Of functions which converges to the exact solution of the problem and is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Some examples are given to demonstrate the reliability and convenience of the method and comparisons are made with the exact solutions.
基金supported by Hunan Provincial Natural Science Foundation of China(2016JJ2061)Scientific Research Fund of Hunan Provincial Education Department(15B102)+3 种基金China Postdoctoral Science Foundation(2013M532169,2014T70991)NNSF of China(11671101,11371367,11271118)the Construct Program of the Key Discipline in Hunan Province(201176)the aid program for Science and Technology Innovative Research Team in Higher Education Institutions of Hunan Province(2014207)
文摘In this article, we investigate the initial value problem(IVP) associated with the defocusing nonlinear wave equation on R^2 as follows:{δttu-△u=-u^3 u(0,x)=u0(x),δtu*(0,x)=u1(x,)where the initial data (uo,ul)∈H^s-1(R^2)It is shown that the IVP is global well-posedness in H^s(R^2)×H^s-1×H^s-1(R^2)for any 1 〉 s 〉2/5.The proof relies upon the almost conserved quantity in using multilinear correction term. The main difficulty is to control the growth of the variation of the almost conserved quantity. Finally, we utilize linear-nonlinear decomposition benefited from the ideas of Roy [1].
文摘The equation of electromagnetic wave propagation through cold collisionless plasma can be reduced to the modified Kortweg-de Vries (mKdV) equation. Using a new technique, whose keys are the trial solution in terms of the exponential function and the ideas of the like-terms' balance, some groups of accurate analytical solutions for this mKdV equation, such as solitary wave solutions, can be obtained. It is successfully shown that this method may be still valid for solving other nonlinear plasma equations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10575082 and 10247008).
文摘This paper obtains some solutions of the 5th-order mKdV equation by using the exponential-fraction trial function method, such as solitary wave solutions, shock wave solutions and the hopping wave solutions. It successfully shows that this method may be valid for solving other nonlinear partial differential equations.
基金supported by the National Natural Science Foundations of China (Grant Nos 10735030,10475055,10675065 and 90503006)National Basic Research Program of China (Grant No 2007CB814800)+2 种基金PCSIRT (Grant No IRT0734)the Research Fund of Postdoctoral of China (Grant No 20070410727)Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20070248120)
文摘The approximate direct reduction method is applied to the perturbed mKdV equation with weak fourth order dispersion and weak dissipation. The similarity reduction solutions of different orders conform to formal coherence, accounting for infinite series reduction solutions to the original equation and general formulas of similarity reduction equations. Painleve Ⅱ type equations, hyperbolic secant and Jacobi elliptic function solutions are obtained for zeroorder similarity reduction equations. Higher order similarity reduction equations are linear variable coefficient ordinary differential equations.