Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr...Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures.展开更多
The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the tw...The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the two identical and coaxial half stators. The calculation of the field with or without current in the windings (respectively with or without permanent magnet) is done using a mixed formulation with strong coupling. In addition, the local high saturation of the ferromagnetic material and the radial and axial components of the magnetic flux are taken into account. The results obtained make it possible to clearly observe, as a function of the intensity of the bus current or the remanent induction, the saturation zones, the lines, the orientations and the magnetic flux densities. 3D finite element modelling provide more accurate numerical data on the magnetic field through multiphysics analysis. This analysis considers the actual operating conditions and leads to the design of an optimized machine structure, with or without current in the windings and/or permanent magnet.展开更多
Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excav...Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment.The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution.The stress increases slightly and limitedly in the course of excavation.The maximum and minimum displacements of segment,manifesting as zonal distribution,distribute in arch bottom and vault respectively.The displacements slightly increase with the advance of TBM and gradually tend to stability.展开更多
A 3-D finite-element numerical simulation model of temperature field for CIESC casting solidification process was developed with the aid of ANSYS software and a series of corresponding experiments were made. The resul...A 3-D finite-element numerical simulation model of temperature field for CIESC casting solidification process was developed with the aid of ANSYS software and a series of corresponding experiments were made. The results showed that the good agreement was obtained between the numerical simulation and the experiments. Based on the numerical simulation results, the characteristics of temperature distribution in the castings during CIESC solidification process were analyzed and summarized. According to the G/R-1/2 method and numerical simulation results, there is no any shrinkage defect in the CIESC casting and structure or casting is fine and compact.展开更多
Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform d...Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform deformation phase of uniaxial tensile test, the widely adopted method of simulating the forming processes with non-supplemented material data from uniaxial tensile test will certainly lead to large error. To reduce this error, the material data is supplemented based on three constitutive models. Then a finite element model of a six passes flexible roll forming process is established based on the supplemented material data and the original material data from the uniaxial tensile test. The flexible roll forming experiment of a B pillar reinforcing plate is carried out to verify the proposed method. Final cross section shapes of the experimental and the simulated results are compared. It is shown that the simulation calculated with supplemented material data based on Swift model agrees well with the experimental results, while the simulation based on original material data could not predict the actual deformation accurately. The results indicate that this material supplement method is reliable and indispensible, and the simulation model can well reflect the real metal forming process. Detailed analysis of the distribution and history of plastic strain at different positions are performed. A new material data supplement method is proposed to tackle the problem which is ignored in other roll forming simulations, and thus the forming process simulation accuracy can be greatly improved.展开更多
The paper proposes a simulated 3D Finite Element Model(FEM)for drilling of Nickel based super alloy known as Nimonic C-263.The Lagrangian finite element model-based simulations were performed to determine the thrust f...The paper proposes a simulated 3D Finite Element Model(FEM)for drilling of Nickel based super alloy known as Nimonic C-263.The Lagrangian finite element model-based simulations were performed to determine the thrust force,temperature generation,effective stress,and effective strain.The simulations were performed according to the L27 orthogonal array.A perfect plastic work piece was assumed,and the shape is considered to be cylindrical.The spindle speed,feed rate,and point angle were considered as the input parameters.The work piece was modeled by Johnson-Cook(JC)material model and tungsten carbide(WC)was chosen as the drill bit and the body was assumed to be rigid.The demonstrative results of the thrust force and the temperature at drill bit cutting edge were substantiated with the simulated results and a percentage error was observed within 10%.Further,simulated results of effective stress and strain were also observed.展开更多
The interaction between pile and soft soil of the passive pile group subjected to soil movement was analyzed with three-dimensional finite element model by using ANSYS software. The soil was assumed to be elastic-plas...The interaction between pile and soft soil of the passive pile group subjected to soil movement was analyzed with three-dimensional finite element model by using ANSYS software. The soil was assumed to be elastic-plastic complying with the Drucker-Prager yield criterion in the analysis. The large displacement of soil was considered and contact elements were used to evaluate the interaction between pile and soil. The influences of soil depth of layer and number of piles on the lateral pressure of the pile were investigated, and the lateral pressure distributions on the (2×1) pile group and on the (2×2) pile group were compared. The results show that the adjacent surcharge may result in significant lateral movement of the soft soil and considerable pressure on the pile. The pressure acting on the row near the surcharge is higher than that on the other row, due to the "barrier" and arching effects in pile groups. The passive load and its distribution should be taken into account in the design of the passive piles.展开更多
The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching...The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching (FRAP) approach to quantify load-induced fluid and solute transport in the LCS in situ, but the measurements were limited to cortical regions 30-50 μm underneath the periosteum due to the constrains of laser penetration. With this work, we aimed to expand our understanding of load-induced fluid and solute transport in both trabecular and cortical bone using a multiscaled image-based finite element analysis (FEA) approach. An intact murine tibia was first re-constructed from microCT images into a three-dimensional (3D) linear elastic FEA model, and the matrix deformations at various locations were calculated under axial loading. A segment of the above 3D model was then imported to the biphasic poroelasticity analysis platform (FEBio) to predict load-induced fluid pressure fields, and interstitial solute/fluid flows through LCS in both cortical and trabecular regions. Further, secondary flow effects such as the shear stress and/or drag force acting on osteocytes, the presumed mechano-sensors in bone, were derived using the previously developed ultrastructural model of Brinkman flow in the canaliculi. The material properties assumed in the FEA models were validated against previously obtained strain and FRAP transport data measured on the cortical cortex. Our results demonstrated the feasibility of this computational approach in estimating the fluid flux in the LCS and the cellular stimulation forces (shear and drag forces) for osteocytes in any cortical and trabecular bone locations, allowing further studies of how the activation of osteocytes correlates with in vivo functional bone formation. The study provides a promising platform to reveal potential cellular mechanisms underlying the anabolic power of exercises and physical activities in treating patients with skeletal deficiencies.展开更多
The paper focuses on the combination of the Finite Element simulation and optimization to improve process or product quality. Three different examples to illustrate the developed genetic approach are given. In all th...The paper focuses on the combination of the Finite Element simulation and optimization to improve process or product quality. Three different examples to illustrate the developed genetic approach are given. In all three examples is-DYNA3D is used to simulate the process and a general aptimiza- tion sensitivity based strategy is utilized to improve the design. The included examples are: 1) stretch bending of tubes, 2) bulging of tubes, and finally 3) hydromechanical deep drawing. these examples clearly illustrate the potential of systematic optimization in the area of metal processing.展开更多
This research presents damage causes of the pylons in the ancient Egyptian temples based on 3D finite elements analysis. The main purpose of the research determines the failure causes of the first pylon of the Ramessi...This research presents damage causes of the pylons in the ancient Egyptian temples based on 3D finite elements analysis. The main purpose of the research determines the failure causes of the first pylon of the Ramessium temple, which is situated in Upper Egypt, at Luxor “Thebes” on the west bank of the Nile River. The first pylon of Ramessium temple subjected to seismic activity effects on long term, combined with several structural damage factors such as the defects resulting from the construction technique, where the builder used the poor quality of stones in foundations of the pylon, the building materials residue was used as filler for the core of the pylon walls, and it lacked vertical joints between the courses. In addition to it founded on alluvial soil that is vulnerable to contaminated water, it is still suffering damage factors and urban trespasses at the moment. All of the former factors helped the pylon to be affected by the earthquakes loads that occurred on it. The structural behavior of the pylon under self-weight and earthquakes loads were carried out by Numerical analysis to find out the loads and stresses which caused collapsing of the pylon. Results of the study indicated that the pylon subjected to a horizontal displacement due to old earthquakes force, led to collapse of the pylon. Finally, the study represents use of modern technique to study the structural behavior of the most important architectural units in ancient Egyptian temples to identify the causes of its collapse.展开更多
To study the influence of roll casting process parameters on temperature and thermal-stress fields for the AZ31 magnesium alloy sheets,three-dimensional geometric and 3D finite element models for roll casting were est...To study the influence of roll casting process parameters on temperature and thermal-stress fields for the AZ31 magnesium alloy sheets,three-dimensional geometric and 3D finite element models for roll casting were established based on the symmetry of roll casting by ANSYS software.Meshing method and smart-sizing algorithm were used to divide finite element mesh in ANSYS software.A series of researches on the temperature and stress distributions during solidification process with different process parameters were done by 3D finite element method.The temperatures of both the liquid-solid two-phase zone and liquid phase zone were elevated with increasing pouring temperature.With the heat transfer coefficient increasing,the two-phase region for liquid-solid becomes smaller.With the pouring temperature increasing and the increase of casting speed,the length of two-phase zone rises.The optimized of process parameters(casting speed 2 m/min,pouring temperature 640 ℃ and heat transfer coefficient 15 kW/(m2·℃) with the water pouring at roller exit was used to produce magnesium alloy AZ31 sheet,and equiaxed grains with the average grain size of 50 μm were achieved after roll casting.The simulation results give better understanding of the temperature variation in phase transformation zone and the formation mechanism of hot cracks in plates during roll casting and help to design the optimized process parameters of roll casting for Mg alloy.展开更多
Objective: The biomechanical characters of the bone fracture of the man femoral hip joint under impact loads are explored. Methods :A biosystem model of the man femoral hip joint by using the GE ( General Electric...Objective: The biomechanical characters of the bone fracture of the man femoral hip joint under impact loads are explored. Methods :A biosystem model of the man femoral hip joint by using the GE ( General Electric) lightspeed multi-lay spiral CT is conducted. A 3D finite element model is established by employing the finite element software ANSYS. The FE analysis mainly concentrates on the effects of the impact directions arising from intense movements and the parenchyma on the femoral hip joint on the stress distributions of the proximal femur. Results:The parenchyma on the hip joint has relatively large relaxation effect on the impact loads. Conclusion:Effects of the angle δ of the impact load to the anterior direction and the angle γ of the impact load to the femur shaft on the bone fracture are given;δ has larger effect on the stress and strain distributions than the angle γ,which mainly represents the fracture of the upper femur including the femoral neck fracture when the posterolateral femur is impacted, consistent with the clinical resuits.展开更多
Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinica...Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice.However, esophageal stents of different types and parameters have varying adaptability and effectiveness forpatients, and they need to be individually selected according to the patient’s specific situation. The purposeof this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3Dprinting technology to fabricate esophageal stents with different ratios of thermoplastic polyurethane (TPU)/(Poly-ε-caprolactone) PCL polymer, and established an artificial neural network model that could predict the radial forceof esophageal stents based on the content of TPU, PCL and print parameter. We selected three optimal ratios formechanical performance tests and evaluated the biomechanical effects of different ratios of stents on esophagealimplantation, swallowing, and stent migration processes through finite element numerical simulation and in vitrosimulation tests. The results showed that different ratios of polymer stents had different mechanical properties,affecting the effectiveness of stent expansion treatment and the possibility of postoperative complications of stentimplantation.展开更多
Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass ...Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass substrates, the simulation results confirm that the Rayleigh waves along the [0001] direction and Love waves along the [1ˉ100] direction are successfully excited in the multilayered structures. Next, the crystal orientations of the ZnO films are rotated, and the influences of ZnO films with different crystal orientations on SAW characterizations, including the phase velocity, electromechanical coupling coefficient, and temperature coefficient of frequency, are investigated. The results show that at appropriate h/λ, Rayleigh wave has a maximum k^2 of 2.4% in(90°, 56.5°, 0°) ZnO film/glass substrate structure; Love wave has a maximum k^2 of 3.81% in(56°, 90°, 0°) ZnO film/glass substrate structure. Meantime, for Rayleigh wave and Love wave devices, zero temperature coefficient of frequency(TCF) can be achieved at appropriate ratio of film thickness to SAW wavelength. These results show that SAW devices with higher k^2 or lower TCF can be fabricated by flexibly selecting the crystal orientations of ZnO films on glass substrates.展开更多
In this paper,various aspects of the 2D and 3D nonlinear liquid sloshing problems in vertically excited containers have been studied numerically along with the help of a modified-transformation.Based on this new numer...In this paper,various aspects of the 2D and 3D nonlinear liquid sloshing problems in vertically excited containers have been studied numerically along with the help of a modified-transformation.Based on this new numerical algorithm,a numerical study on a regularly and randomly excited container in vertical direction was conducted utilizing four different cases: The first case was performed utilizing a 2D container with regular excitations.The next case examined a regularly excited 3D container with two different initial conditions for the liquid free surface,and finally,3D container with random excitation in the vertical direction.A grid independence study was performed along with a series of validation tests.An iteration error estimation method was used to stop the iterative solver(used for solving the discretized governing equations in the computational domain) upon reaching steady state of results at each time step.In the present case,this method was found to produce quite accurate results and to be more time efficient as compared to other conventional stopping procedures for iterative solvers.The results were validated with benchmark results.The wave elevation time history,phase plane diagram and surface plots represent the wave nonlinearity during its motion.展开更多
In this paper, an explicit method is generalized from 1D and 2D models to a 3D model for numerical simulation of wave motion, and the corresponding recursion formulas are developed for 3D irregular grids. For uniform ...In this paper, an explicit method is generalized from 1D and 2D models to a 3D model for numerical simulation of wave motion, and the corresponding recursion formulas are developed for 3D irregular grids. For uniform cubic grids, the approach used to establish stable formulas with 2M-order accuracy is discussed in detail, with M being a positive integer, and is illustrated by establishing second order (M=1) recursion formulas. The theoretical results presented in this paper are demonstrated through numerical testing.展开更多
Additive manufacturing(AM),adding materials layer by layer,can be used to produce objects of almost any shape or geometry.However,AM techniques cannot accurately build parts with large overhangs,especially for the lar...Additive manufacturing(AM),adding materials layer by layer,can be used to produce objects of almost any shape or geometry.However,AM techniques cannot accurately build parts with large overhangs,especially for the large features close to horizontal,hanging over the void.The overhangs will make the manufactured model deviate from the design model,which will result in the performance of the manufactured model that cannot satisfy the design requirements.In this paper,we will propose a new finite element(FE)analysis model that includes the manufacturing errors by mimicking the AM layer by layer construction process.In such FE model,an overhang coefficient is introduced to each FE,which is defined by the support elements in the lower layer.By mimicking the AM process from the bottom layer to the top layer,all the FE properties are updated based on their overhang coefficients,which makes the computational model be able to predict the manufactured model with manufacturing errors.The proposed model can be used to predict the performance of the AM objects in the design stage,which will help the designers to improve their design by the simulation results.展开更多
The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good ac...The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good accuracy can be obtained with relatively coarse girds. In particular, application to the tension specimen shows very good agreement with the evaluation of stress intensity factors, which is better than the results of other methods. This implies a considerable potential for using this method in the 3D analysis of finite geometry solids and suggests a possible extension of this technique to nonlinear material behavior.展开更多
The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality ...The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality of design can be improved greatly. At the same time, it is helpful to confirm the cooling system structure and optimize the process conditions. In this paper, the 3D surface model of mold cavity is used to replace the middle-plane model in the simulation by Boundary Element Method, which break the bottleneck of the application of the injection molding simulation softwares base on the middle-plane model. With the improvements of this paper, a practical and commercial simulation software of injection molding cooling process named as HsCAE3D6.0 is developed.展开更多
According to the magnetic circuit design theory and performance requirements of magnetic field, an H-type permanent magnetic actuator that generates uniform magnetic field larger than 0.4 T in the interested re- gion ...According to the magnetic circuit design theory and performance requirements of magnetic field, an H-type permanent magnetic actuator that generates uniform magnetic field larger than 0.4 T in the interested re- gion has been designed in this paper. The static magnetic field simulation analysis was done by Ansoft' s Max- well three-dimensional (3D) software. The simulation results showed that the magnetic field of this system can meet the requirements, and this permanent magnetic actuator designed in this paper can be used in small nuclear magnetic resonance (NMR) svstem.展开更多
基金Supported by Science Center for Gas Turbine Project of China (Grant No.P2022-B-IV-014-001)Frontier Leading Technology Basic Research Special Project of Jiangsu Province of China (Grant No.BK20212007)the BIT Research and Innovation Promoting Project of China (Grant No.2022YCXZ019)。
文摘Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures.
文摘The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the two identical and coaxial half stators. The calculation of the field with or without current in the windings (respectively with or without permanent magnet) is done using a mixed formulation with strong coupling. In addition, the local high saturation of the ferromagnetic material and the radial and axial components of the magnetic flux are taken into account. The results obtained make it possible to clearly observe, as a function of the intensity of the bus current or the remanent induction, the saturation zones, the lines, the orientations and the magnetic flux densities. 3D finite element modelling provide more accurate numerical data on the magnetic field through multiphysics analysis. This analysis considers the actual operating conditions and leads to the design of an optimized machine structure, with or without current in the windings and/or permanent magnet.
基金Supported by National Natural Science Foundation of China(No.90815019)National Key Basic Research Program of China("973" Program,No.2007CB714101)Key Project in the National Science and Technology Pillar Program during the Eleventh Five-Year Plan Period(No.2006BAB04A13)
文摘Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment.The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution.The stress increases slightly and limitedly in the course of excavation.The maximum and minimum displacements of segment,manifesting as zonal distribution,distribute in arch bottom and vault respectively.The displacements slightly increase with the advance of TBM and gradually tend to stability.
文摘A 3-D finite-element numerical simulation model of temperature field for CIESC casting solidification process was developed with the aid of ANSYS software and a series of corresponding experiments were made. The results showed that the good agreement was obtained between the numerical simulation and the experiments. Based on the numerical simulation results, the characteristics of temperature distribution in the castings during CIESC solidification process were analyzed and summarized. According to the G/R-1/2 method and numerical simulation results, there is no any shrinkage defect in the CIESC casting and structure or casting is fine and compact.
基金Supported by National Natural Science Foundation of China(Grant Nos.51205004,51475003)Beijing Municipal Natural Science Foundation of China(Grant No.3152010)Beijing Municipal Education Committee Science and Technology Program,China(Grant No.KM201510009004)
文摘Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform deformation phase of uniaxial tensile test, the widely adopted method of simulating the forming processes with non-supplemented material data from uniaxial tensile test will certainly lead to large error. To reduce this error, the material data is supplemented based on three constitutive models. Then a finite element model of a six passes flexible roll forming process is established based on the supplemented material data and the original material data from the uniaxial tensile test. The flexible roll forming experiment of a B pillar reinforcing plate is carried out to verify the proposed method. Final cross section shapes of the experimental and the simulated results are compared. It is shown that the simulation calculated with supplemented material data based on Swift model agrees well with the experimental results, while the simulation based on original material data could not predict the actual deformation accurately. The results indicate that this material supplement method is reliable and indispensible, and the simulation model can well reflect the real metal forming process. Detailed analysis of the distribution and history of plastic strain at different positions are performed. A new material data supplement method is proposed to tackle the problem which is ignored in other roll forming simulations, and thus the forming process simulation accuracy can be greatly improved.
文摘The paper proposes a simulated 3D Finite Element Model(FEM)for drilling of Nickel based super alloy known as Nimonic C-263.The Lagrangian finite element model-based simulations were performed to determine the thrust force,temperature generation,effective stress,and effective strain.The simulations were performed according to the L27 orthogonal array.A perfect plastic work piece was assumed,and the shape is considered to be cylindrical.The spindle speed,feed rate,and point angle were considered as the input parameters.The work piece was modeled by Johnson-Cook(JC)material model and tungsten carbide(WC)was chosen as the drill bit and the body was assumed to be rigid.The demonstrative results of the thrust force and the temperature at drill bit cutting edge were substantiated with the simulated results and a percentage error was observed within 10%.Further,simulated results of effective stress and strain were also observed.
基金Project(50378036) supported by the National Natural Science Foundation of China
文摘The interaction between pile and soft soil of the passive pile group subjected to soil movement was analyzed with three-dimensional finite element model by using ANSYS software. The soil was assumed to be elastic-plastic complying with the Drucker-Prager yield criterion in the analysis. The large displacement of soil was considered and contact elements were used to evaluate the interaction between pile and soil. The influences of soil depth of layer and number of piles on the lateral pressure of the pile were investigated, and the lateral pressure distributions on the (2×1) pile group and on the (2×2) pile group were compared. The results show that the adjacent surcharge may result in significant lateral movement of the soft soil and considerable pressure on the pile. The pressure acting on the row near the surcharge is higher than that on the other row, due to the "barrier" and arching effects in pile groups. The passive load and its distribution should be taken into account in the design of the passive piles.
基金supported by grants from NIH (P30GM103333 and RO1AR054385 to LW)China CSC fellowship (to LF)DOD W81XWH-13-1-0148 (to XLL)
文摘The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching (FRAP) approach to quantify load-induced fluid and solute transport in the LCS in situ, but the measurements were limited to cortical regions 30-50 μm underneath the periosteum due to the constrains of laser penetration. With this work, we aimed to expand our understanding of load-induced fluid and solute transport in both trabecular and cortical bone using a multiscaled image-based finite element analysis (FEA) approach. An intact murine tibia was first re-constructed from microCT images into a three-dimensional (3D) linear elastic FEA model, and the matrix deformations at various locations were calculated under axial loading. A segment of the above 3D model was then imported to the biphasic poroelasticity analysis platform (FEBio) to predict load-induced fluid pressure fields, and interstitial solute/fluid flows through LCS in both cortical and trabecular regions. Further, secondary flow effects such as the shear stress and/or drag force acting on osteocytes, the presumed mechano-sensors in bone, were derived using the previously developed ultrastructural model of Brinkman flow in the canaliculi. The material properties assumed in the FEA models were validated against previously obtained strain and FRAP transport data measured on the cortical cortex. Our results demonstrated the feasibility of this computational approach in estimating the fluid flux in the LCS and the cellular stimulation forces (shear and drag forces) for osteocytes in any cortical and trabecular bone locations, allowing further studies of how the activation of osteocytes correlates with in vivo functional bone formation. The study provides a promising platform to reveal potential cellular mechanisms underlying the anabolic power of exercises and physical activities in treating patients with skeletal deficiencies.
文摘The paper focuses on the combination of the Finite Element simulation and optimization to improve process or product quality. Three different examples to illustrate the developed genetic approach are given. In all three examples is-DYNA3D is used to simulate the process and a general aptimiza- tion sensitivity based strategy is utilized to improve the design. The included examples are: 1) stretch bending of tubes, 2) bulging of tubes, and finally 3) hydromechanical deep drawing. these examples clearly illustrate the potential of systematic optimization in the area of metal processing.
文摘This research presents damage causes of the pylons in the ancient Egyptian temples based on 3D finite elements analysis. The main purpose of the research determines the failure causes of the first pylon of the Ramessium temple, which is situated in Upper Egypt, at Luxor “Thebes” on the west bank of the Nile River. The first pylon of Ramessium temple subjected to seismic activity effects on long term, combined with several structural damage factors such as the defects resulting from the construction technique, where the builder used the poor quality of stones in foundations of the pylon, the building materials residue was used as filler for the core of the pylon walls, and it lacked vertical joints between the courses. In addition to it founded on alluvial soil that is vulnerable to contaminated water, it is still suffering damage factors and urban trespasses at the moment. All of the former factors helped the pylon to be affected by the earthquakes loads that occurred on it. The structural behavior of the pylon under self-weight and earthquakes loads were carried out by Numerical analysis to find out the loads and stresses which caused collapsing of the pylon. Results of the study indicated that the pylon subjected to a horizontal displacement due to old earthquakes force, led to collapse of the pylon. Finally, the study represents use of modern technique to study the structural behavior of the most important architectural units in ancient Egyptian temples to identify the causes of its collapse.
基金Project(CSTC 2010BB4301) supported by Natural Science Foundation Project of Chongqing,ChinaProject supported by the Open Fund for Key Laboratory of Manufacture and Test Techniques for Automobile Parts of Ministry of Education Chongqing University of Technology,2003,China
文摘To study the influence of roll casting process parameters on temperature and thermal-stress fields for the AZ31 magnesium alloy sheets,three-dimensional geometric and 3D finite element models for roll casting were established based on the symmetry of roll casting by ANSYS software.Meshing method and smart-sizing algorithm were used to divide finite element mesh in ANSYS software.A series of researches on the temperature and stress distributions during solidification process with different process parameters were done by 3D finite element method.The temperatures of both the liquid-solid two-phase zone and liquid phase zone were elevated with increasing pouring temperature.With the heat transfer coefficient increasing,the two-phase region for liquid-solid becomes smaller.With the pouring temperature increasing and the increase of casting speed,the length of two-phase zone rises.The optimized of process parameters(casting speed 2 m/min,pouring temperature 640 ℃ and heat transfer coefficient 15 kW/(m2·℃) with the water pouring at roller exit was used to produce magnesium alloy AZ31 sheet,and equiaxed grains with the average grain size of 50 μm were achieved after roll casting.The simulation results give better understanding of the temperature variation in phase transformation zone and the formation mechanism of hot cracks in plates during roll casting and help to design the optimized process parameters of roll casting for Mg alloy.
文摘Objective: The biomechanical characters of the bone fracture of the man femoral hip joint under impact loads are explored. Methods :A biosystem model of the man femoral hip joint by using the GE ( General Electric) lightspeed multi-lay spiral CT is conducted. A 3D finite element model is established by employing the finite element software ANSYS. The FE analysis mainly concentrates on the effects of the impact directions arising from intense movements and the parenchyma on the femoral hip joint on the stress distributions of the proximal femur. Results:The parenchyma on the hip joint has relatively large relaxation effect on the impact loads. Conclusion:Effects of the angle δ of the impact load to the anterior direction and the angle γ of the impact load to the femur shaft on the bone fracture are given;δ has larger effect on the stress and strain distributions than the angle γ,which mainly represents the fracture of the upper femur including the femoral neck fracture when the posterolateral femur is impacted, consistent with the clinical resuits.
基金Nanning Technology and Innovation Special Program(20204122)and Research Grant for 100 Talents of Guangxi Plan.
文摘Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice.However, esophageal stents of different types and parameters have varying adaptability and effectiveness forpatients, and they need to be individually selected according to the patient’s specific situation. The purposeof this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3Dprinting technology to fabricate esophageal stents with different ratios of thermoplastic polyurethane (TPU)/(Poly-ε-caprolactone) PCL polymer, and established an artificial neural network model that could predict the radial forceof esophageal stents based on the content of TPU, PCL and print parameter. We selected three optimal ratios formechanical performance tests and evaluated the biomechanical effects of different ratios of stents on esophagealimplantation, swallowing, and stent migration processes through finite element numerical simulation and in vitrosimulation tests. The results showed that different ratios of polymer stents had different mechanical properties,affecting the effectiveness of stent expansion treatment and the possibility of postoperative complications of stentimplantation.
基金supported by the National Natural Science Foundation of China(Grant No.11304160)the Natural Science Foundation of Jiangsu Provincial Higher Education Institutions,China(Grant No.13KJB140008)the Foundation of Nanjing University of Posts and Telecommunications,China(Grant No.NY213018)
文摘Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass substrates, the simulation results confirm that the Rayleigh waves along the [0001] direction and Love waves along the [1ˉ100] direction are successfully excited in the multilayered structures. Next, the crystal orientations of the ZnO films are rotated, and the influences of ZnO films with different crystal orientations on SAW characterizations, including the phase velocity, electromechanical coupling coefficient, and temperature coefficient of frequency, are investigated. The results show that at appropriate h/λ, Rayleigh wave has a maximum k^2 of 2.4% in(90°, 56.5°, 0°) ZnO film/glass substrate structure; Love wave has a maximum k^2 of 3.81% in(56°, 90°, 0°) ZnO film/glass substrate structure. Meantime, for Rayleigh wave and Love wave devices, zero temperature coefficient of frequency(TCF) can be achieved at appropriate ratio of film thickness to SAW wavelength. These results show that SAW devices with higher k^2 or lower TCF can be fabricated by flexibly selecting the crystal orientations of ZnO films on glass substrates.
文摘In this paper,various aspects of the 2D and 3D nonlinear liquid sloshing problems in vertically excited containers have been studied numerically along with the help of a modified-transformation.Based on this new numerical algorithm,a numerical study on a regularly and randomly excited container in vertical direction was conducted utilizing four different cases: The first case was performed utilizing a 2D container with regular excitations.The next case examined a regularly excited 3D container with two different initial conditions for the liquid free surface,and finally,3D container with random excitation in the vertical direction.A grid independence study was performed along with a series of validation tests.An iteration error estimation method was used to stop the iterative solver(used for solving the discretized governing equations in the computational domain) upon reaching steady state of results at each time step.In the present case,this method was found to produce quite accurate results and to be more time efficient as compared to other conventional stopping procedures for iterative solvers.The results were validated with benchmark results.The wave elevation time history,phase plane diagram and surface plots represent the wave nonlinearity during its motion.
基金China Postdoctoral Science Foundation Under Grant No.20100480321National Basic Research Program of China Under Grant No. 2007CB714200
文摘In this paper, an explicit method is generalized from 1D and 2D models to a 3D model for numerical simulation of wave motion, and the corresponding recursion formulas are developed for 3D irregular grids. For uniform cubic grids, the approach used to establish stable formulas with 2M-order accuracy is discussed in detail, with M being a positive integer, and is illustrated by establishing second order (M=1) recursion formulas. The theoretical results presented in this paper are demonstrated through numerical testing.
基金This work has been supported by National Natural Science Foundation of China(51705158)Guangdong Basic and Applied Basic Research Foundation(2019A1515011783)the Fundamental Research Funds for the Central Universities(2018MS45).
文摘Additive manufacturing(AM),adding materials layer by layer,can be used to produce objects of almost any shape or geometry.However,AM techniques cannot accurately build parts with large overhangs,especially for the large features close to horizontal,hanging over the void.The overhangs will make the manufactured model deviate from the design model,which will result in the performance of the manufactured model that cannot satisfy the design requirements.In this paper,we will propose a new finite element(FE)analysis model that includes the manufacturing errors by mimicking the AM layer by layer construction process.In such FE model,an overhang coefficient is introduced to each FE,which is defined by the support elements in the lower layer.By mimicking the AM process from the bottom layer to the top layer,all the FE properties are updated based on their overhang coefficients,which makes the computational model be able to predict the manufactured model with manufacturing errors.The proposed model can be used to predict the performance of the AM objects in the design stage,which will help the designers to improve their design by the simulation results.
文摘The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good accuracy can be obtained with relatively coarse girds. In particular, application to the tension specimen shows very good agreement with the evaluation of stress intensity factors, which is better than the results of other methods. This implies a considerable potential for using this method in the 3D analysis of finite geometry solids and suggests a possible extension of this technique to nonlinear material behavior.
基金Supported by NationalNatural Science FoundationCouncil of the People’s Republic of China (20490224)
文摘The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality of design can be improved greatly. At the same time, it is helpful to confirm the cooling system structure and optimize the process conditions. In this paper, the 3D surface model of mold cavity is used to replace the middle-plane model in the simulation by Boundary Element Method, which break the bottleneck of the application of the injection molding simulation softwares base on the middle-plane model. With the improvements of this paper, a practical and commercial simulation software of injection molding cooling process named as HsCAE3D6.0 is developed.
基金National Natural Science Foundation of China (No.11105096)Chinese Academy of Sciences Research Equipment Development Project (No.YZ201253)Suzhou Science and Technology Project (No.SYG201125)
文摘According to the magnetic circuit design theory and performance requirements of magnetic field, an H-type permanent magnetic actuator that generates uniform magnetic field larger than 0.4 T in the interested re- gion has been designed in this paper. The static magnetic field simulation analysis was done by Ansoft' s Max- well three-dimensional (3D) software. The simulation results showed that the magnetic field of this system can meet the requirements, and this permanent magnetic actuator designed in this paper can be used in small nuclear magnetic resonance (NMR) svstem.