期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Deformation Mechanism and Stability of a Rocky Slope 被引量:4
1
作者 黄润秋 肖华波 +1 位作者 巨能攀 赵建军 《Journal of China University of Geosciences》 SCIE CAS CSCD 2007年第1期77-84,共8页
A high slope is located on the side of the spillway at a hydropower station in Southwest China, which has some weak inter-layers inclining outwards. Parts of the slope show heavy weathering and unloading. There appear... A high slope is located on the side of the spillway at a hydropower station in Southwest China, which has some weak inter-layers inclining outwards. Parts of the slope show heavy weathering and unloading. There appeared deformation and tensile crack either on the surface or on the afteredge of the slope during excavation, and under a platform (elev. 488 m), two levels of slopes collapsed on the downriver side. Based on the investigation in situ and the analysis of the geological structure, the conceptual model of deformation and failure mechanism was erected for this slope. Furthermore, the deformation characteristics were studied with FLAC^3D numerical simulation. Comprehensive analysis shows that the whole deformation of the slope is unloading rebound in certain depth scope and the whole body does not slide along any weak interlayer. In addition, two parts with prominent local deformation in the shallow layer of the slope show the models of "creep sfiding-tensile cracking" and "slidlng-tensile cracking", respectively. Based on the above analysis, the corresponding project of support and reinforcement is proposed to make the slope more stable. 展开更多
关键词 high rock slope deformation and failure mechanism STABILITY SUPPORT
下载PDF
Geomechanical model test for analysis of surrounding rock behaviours in composite strata 被引量:5
2
作者 Linken Shi Hui Zhou +2 位作者 Ming Song Jingjing Lu Zhenjiang Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第4期774-786,共13页
Due to the large differences in physico-mechanical pro perties of composite strata,jamming,head sinking and other serious consequences occur frequently during tunnel boring machine(TBM)excavation.To analyse the stabil... Due to the large differences in physico-mechanical pro perties of composite strata,jamming,head sinking and other serious consequences occur frequently during tunnel boring machine(TBM)excavation.To analyse the stability of surrounding rocks in composite strata under the disturbance of TBM excavation,a geomechanical model test was carried out based on the Lanzhou water supply project.The evolution patterns and distribution characteristics of the strain,stress,and tunnel deformation and fracturing were analysed.The results showed that during TBM excavation in the horizontal composite formations(with upper soft and lower hard layers and with upper hard and lower soft layers),a significant difference in response to the surrounding rocks can be observed.As the strength ratio of the surrounding rocks decreases,the ratio of the maximum strain of the hard rock mass to that of the relatively soft rock mass gradually decreases.The radial stress of the relatively soft rock mass is smaller than that of the hard rock mass in both types of composite strata,indicating that the weak rock mass in the composite formation results in the difference in the mechanical behaviours of the surrounding rocks.The displacement field of the surrounding rocks obtained by the digital speckle correlation method(DSCM)and the macro-fracture morphology after tunnel excavation visually reflected the deformation difference of the composite rock mass.Finally,some suggestions and measures were provided for TBM excavation in composite strata,such as advance geological forecasting and effective monitoring of weak rock masses. 展开更多
关键词 Model test Tunnel excavation Composite strata deformation and failure mechanism Stability analysis
下载PDF
Characteristics and mechanisms of turboshaft engine axial compressor casing containment 被引量:4
3
作者 Zekan HE Xiaojun GUO +4 位作者 Haijun XUAN Xiaoming SHAN Xiaojing FAN Chuanyong CHEN Weirong HONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第1期171-180,共10页
To investigate the containment characteristics and mechanisms of axial compressor blade and casing in turboshaft engine,experimental and simulation research is conducted on Titanium alloy axial compressor blades and s... To investigate the containment characteristics and mechanisms of axial compressor blade and casing in turboshaft engine,experimental and simulation research is conducted on Titanium alloy axial compressor blades and stainless steel simulator casings in this paper.Experiments for four thicknesses(from 0.8 mm to 1.4 mm)of casings are presented on high-speed spin tester.Perforation,ricochet with and without failure of the casings are obtained in test results.Three obvious bulges or dishing region are observed,petaling failure occurs in the first bulge or the third deformation region.Parabolic and elongated dimples are observed at the fracture surface.Finite Element(FE)models with calibrated Johnson-Cook material behavior law are built and analyzed by using explicit dynamic software for a better understanding on the containment behavior.Good agreement is obtained between the experimental observations and numerical predictions.The evolution of the impact force,energy absorption,temperature increase and the cracks’propagation are analyzed.Three force peaks occur in the impact process.Energy analysis reveals that penetration condition of ricochet with failure leads to most internal energy of the casing. 展开更多
关键词 Axial compressor Blade and casing containment Damage characteristic deformation and failure mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部