期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Hot deformation characterization and processing map of Cu-10 %Fe-1.5 %Ag in situ composite 被引量:3
1
作者 Jun-Qing Guo He Yang +1 位作者 Ping Liu Zhi-Wei Cai 《Rare Metals》 SCIE EI CAS CSCD 2017年第11期912-918,共7页
The Cu-10 %Fe-1.5 %Ag in situ composite with high strength, high conductivity and low cost was prepared, and its hot deformation behavior was investi- gated by isothermal compression test with true strain of 0.69, tem... The Cu-10 %Fe-1.5 %Ag in situ composite with high strength, high conductivity and low cost was prepared, and its hot deformation behavior was investi- gated by isothermal compression test with true strain of 0.69, temperature range of 750-950℃ and strain rate of 0.002-1.000 s-1. The flow stress-strain response shows the characterization of dynamic recrystallization (DRX), and the peak stress increases gradually with deformation tem- perature decreasing and strain rate increasing. The defor- mation activation energy of the composite for DRX is calculated as 241.864 kJ.mo1-1. The constitutive relation of the composite was got by Arrhenius equation. Further- more, according to the dynamic material modeling and Kumar-Prasad's instability criteria, the processing map was constructed and the unsafe regions for hot deformation were analyzed. Based on the processing map and microstructural evolution, the optimal parameter range for hot deformation processing is 750-863℃ at the strain rate of 0.002-0.013 s-1. 展开更多
关键词 Cu-10 %Fe-1.5 %Ag in situ composite Hotcompression test deformation characterization Processingmap Dynamic recrystallization
原文传递
A Preliminary Analysis of Relations Between Tectonic Deformation of Sedimentary Cover and Basement in Kuqa Depression
2
作者 LiuJie QuGuosheng +3 位作者 TongXiaoguang SongHuizhen ZhouQing ZhangNing 《Earthquake Research in China》 2004年第4期406-416,共11页
Study of seismic activity in the Kuqa area enables us to infer some possible active faults in basement from the epicentral distribution on different profiles. The relations between active faults in the basement and su... Study of seismic activity in the Kuqa area enables us to infer some possible active faults in basement from the epicentral distribution on different profiles. The relations between active faults in the basement and surface structures are analyzed and the difference between sedimentary cover and basement in their deformation characteristics and the genesis are discussed. The following conclusions have been drawn: (1) the epicentral distribution indicates that, the east Qiulitag and south and north Qiulitag deep faults in the basement correspond to the east and west Qiulitag anticlines, respectively. Moreover, deep faults also exist beneath the Yiqiklik and Yaken anticlines. It indicates that the formation of surface structures is controlled by deep structures; (2) A NE-trending strike-slip fault develops along the line from the western termination of Yiqiklik structure to Dongqiu Well 5 and a NW-trending active fault on the western side of Baicheng. The two active faults across the tectonic strike are the main causes for tectonic segmentation of the Kuqa depression and possibly the cause for the middle segment (Kuqa-Baicheng) of the depression to be more shortened than both its eastern and western terminations; (3) The difference between the sedimentary cover and basement in their deformation characteristics depends mainly on the different properties of media between them. The lithospheric strength of the basement in the basin is fairly high, which determines the basement deformation to be mainly of brittle fracture——seismic activity. While the strength of sedimentary cover is low, where there exist weak thin layers, such as coal and gyps. Under the effect of strong tectonic compression, the sedimentary rocks may undergo strong viscous or plastic flow deformation; meanwhile, an aseismic detachment may take place along the weak layers. 展开更多
关键词 SEISMICITY Surface structure Basement fault deformation character Kuqa depression
下载PDF
High Temperature Stress Rupture Anisotropy of a Ni-Based Single Crystal Superalloy 被引量:2
3
作者 Guanglei Wang Jinlai Liu +4 位作者 Jide Liu Tao Jin Xiaofeng Sun Xudong Sun Zhuangqi Hu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第10期1003-1007,共5页
High temperature stress rupture anisotropies of a second generation Ni-base single crystal(SC) superalloy specimens with [001], [011] and [111] orientations under 900 ℃/445 MPa and 1100 ℃/100 MPa have been investi... High temperature stress rupture anisotropies of a second generation Ni-base single crystal(SC) superalloy specimens with [001], [011] and [111] orientations under 900 ℃/445 MPa and 1100 ℃/100 MPa have been investigated in the present study, with attentions to the evolution of γ/γ′ microstructure observed by scanning electron microscopy and the dislocation configuration characterized by transmission electron microscopy in each oriented specimen. At 1100 ℃/100 MPa as well as 900 ℃/445 MPa, the single crystal superalloy exhibits obvious stress rupture anisotropic behavior. The [001] oriented specimen has the longest rupture lifetime at 900 ℃/445 MPa, and the [111] oriented sample shows the best rupture strength at 1100 ℃/100 MPa. While the [011] oriented specimen presents the worst rupture lifetime at each testing condition, its stress rupture property at 1100 ℃/100 MPa is clearly improved, compared with900 ℃/445 MPa. The evident stress rupture anisotropy at 900 ℃/445 MPa is mainly attributed to the distinctive movement way of dislocations in each oriented sample. Whereas, at 1100 ℃/100 MPa, together with the individual dislocation configuration, the evolution of γ/γ′ microstructure in each orientation also plays a key role in the apparent stress rupture anisotropy. 展开更多
关键词 Ni-based single crystal superalloy Stress rupture property Anisotropy Microstructure characterization deformation mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部