As a typical two-dimensional(2D)transition metal dichalcogenides(TMDCs)material with nonzero band gap,MoS_(2)has a wide range of potential applications as building blocks in the field of nanoelectronics.The stability ...As a typical two-dimensional(2D)transition metal dichalcogenides(TMDCs)material with nonzero band gap,MoS_(2)has a wide range of potential applications as building blocks in the field of nanoelectronics.The stability and reliability of the corresponding nanoelectronic devices depend critically on the mechanical performance and cyclic reliability of 2D MoS_(2).Although an in situ technique has been used to analyze the mechanical properties of 2D materials,the cyclic mechanical behavior,that is,fatigue,remains a major challenge in the practical application of the devices.This study was aimed at analyzing the planar cyclic performance and deformation behavior of three-layer MoS_(2)nanosheets(NSs)using an in situ transmission electron microscopy(TEM)variable-amplitude uniaxial low-frequency and cyclic loading-unloading tensile acceleration test.We also elucidated the strengthening effect of the natural overlaying affix fragments(other external NSs)or wrinkle folds(internal folds from the NS itself)on cycling performances and service life of MoS_(2)NSs by delaying the whole process of fatigue crack initiation,propagation,and fracture.The results have been confirmed by molecular dynamics(MDs)simulations.The overlaying enhancement effect effectively ensures the long-term reliability and stability of nanoelectronic devices made of few-layer 2D materials.展开更多
China has been developed into one of the most active regions in terms of both fundamental and applied research on magnesium (Mg) and its alloys in the world from a solid base laid by its prominent metallurgist and m...China has been developed into one of the most active regions in terms of both fundamental and applied research on magnesium (Mg) and its alloys in the world from a solid base laid by its prominent metallurgist and materials scientists over the past decades. Nowadays, a large number of young-generation researchers have been inspired by their predecessors and become the key participants in the fields of Mg alloys, which consequently led to the establishment of China Youth Scholar Society for Magnesium Alloys Research in 2015. Since then, the first two China Youth Scholars Symposiums on Mg Alloys Research had been held at Harbin (2015) and Chongqing (2016) China, respectively. A number of crucial research inter- ests related to fundamental and applied Mg research were discussed at the conferences and summarized in this short perspective, aiming to boost far-reaching initiatives for development of new Mg-based materials to satisfy the requirements for a broad range of industrial employments. Herein, four main aspects are included as follows: i) Plastic deformation mechanism and strengthening strategy, ii) Design and development of new Mg-based materials, iii) Key service properties, and iv) New processing technologies.展开更多
基金the financial supports from the National Key Research and Development Program of China(2018YFA0703503)Overseas Expertise Introduction Projects for Discipline Innovation(111 project,B14003)+2 种基金National Natural Science Foundation of China(51991340,51991342,51527802,51902207,52102230)NSFC/RGC Joint Research Scheme project N_HKU159/22,Natural Science Foundation of Shenzhen(JCYJ20220530154404009)Zhejiang Provincial Natural Science Foundation of China(LQ19E020005).
文摘As a typical two-dimensional(2D)transition metal dichalcogenides(TMDCs)material with nonzero band gap,MoS_(2)has a wide range of potential applications as building blocks in the field of nanoelectronics.The stability and reliability of the corresponding nanoelectronic devices depend critically on the mechanical performance and cyclic reliability of 2D MoS_(2).Although an in situ technique has been used to analyze the mechanical properties of 2D materials,the cyclic mechanical behavior,that is,fatigue,remains a major challenge in the practical application of the devices.This study was aimed at analyzing the planar cyclic performance and deformation behavior of three-layer MoS_(2)nanosheets(NSs)using an in situ transmission electron microscopy(TEM)variable-amplitude uniaxial low-frequency and cyclic loading-unloading tensile acceleration test.We also elucidated the strengthening effect of the natural overlaying affix fragments(other external NSs)or wrinkle folds(internal folds from the NS itself)on cycling performances and service life of MoS_(2)NSs by delaying the whole process of fatigue crack initiation,propagation,and fracture.The results have been confirmed by molecular dynamics(MDs)simulations.The overlaying enhancement effect effectively ensures the long-term reliability and stability of nanoelectronic devices made of few-layer 2D materials.
基金support from Chinese Committee for Magnesium and its Application
文摘China has been developed into one of the most active regions in terms of both fundamental and applied research on magnesium (Mg) and its alloys in the world from a solid base laid by its prominent metallurgist and materials scientists over the past decades. Nowadays, a large number of young-generation researchers have been inspired by their predecessors and become the key participants in the fields of Mg alloys, which consequently led to the establishment of China Youth Scholar Society for Magnesium Alloys Research in 2015. Since then, the first two China Youth Scholars Symposiums on Mg Alloys Research had been held at Harbin (2015) and Chongqing (2016) China, respectively. A number of crucial research inter- ests related to fundamental and applied Mg research were discussed at the conferences and summarized in this short perspective, aiming to boost far-reaching initiatives for development of new Mg-based materials to satisfy the requirements for a broad range of industrial employments. Herein, four main aspects are included as follows: i) Plastic deformation mechanism and strengthening strategy, ii) Design and development of new Mg-based materials, iii) Key service properties, and iv) New processing technologies.