期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Regulated Degradation of HFR1 Desensitizes Light Signaling in Arabidopsis
1
作者 Haiyang Wang(Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA) 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第S1期185-185,共1页
Arabidopsis seedlings undergo photomorphogenesis in the light and etiolation in the dark. HFR1, a bHLH transcription factor, is required for both phytochrome A (phyA)-mediated far-red and cryptochrome 1 (cry1)-mediate... Arabidopsis seedlings undergo photomorphogenesis in the light and etiolation in the dark. HFR1, a bHLH transcription factor, is required for both phytochrome A (phyA)-mediated far-red and cryptochrome 1 (cry1)-mediated blue light signaling. We report that HFR1 is a short-lived protein in darkness and is degraded through a 26S proteasome-dependent pathway. Light, irrespective of its quality, enhances HFR1 protein accumulation via promoting its stabilization. We demonstrate that HFR1 physically interacts with COP1 and that COP1 exhibits ubiquitin ligase activity toward HFR1 in vitro. In addition, we show that COP1 is required for degradation of HFR1 in vivo. Furthermore, plants overexpressing a C-terminal 161 amino acid fragment of HFR1 (CT161) display enhanced photomorphogenesis, suggesting an autonomous function of CT161 in promoting light signaling. This truncated HFR1 gene product is more stable than the full-length HFR1 protein in darkness, indicating that the COP1-interacting N-terminal portion of HFR1 is essential for COP1-mediated destabilization of HFR1. These results suggest that light enhances HFR1 protein accumulation by abrogating COP1-mediated degradation of HFR1, which is necessary and sufficient for promoting light signaling. Additionally, our results substantiate the E3 ligase activity of COP1 and its critical role in desensitizing light signaling. 展开更多
关键词 HFR Regulated degradation of HFR1 Desensitizes Light signaling in Arabidopsis
下载PDF
Q-factor improvement of degenerate four-wave-mixing regenerators for ASE degraded signals 被引量:1
2
作者 卢行 武保剑 +2 位作者 耿勇 周星宇 孙凡 《Optoelectronics Letters》 EI 2017年第6期401-404,共4页
All-optical regenerators can be used to suppress amplified spontaneous emission(ASE) noise introduced by cascaded erbium doped fiber amplifiers(EDFAs) in optical fiber communication systems and lead to the improvement... All-optical regenerators can be used to suppress amplified spontaneous emission(ASE) noise introduced by cascaded erbium doped fiber amplifiers(EDFAs) in optical fiber communication systems and lead to the improvement of optical receiver sensitivity. By introducing the Q-factor transfer function(QTF), we evaluate the Q-factor performance of degenerate four-wave mixing(DFWM) regenerators with clock pump and reveal the differences between the optimal input powers determined from the static and dynamic power tranfer function(PTF) and the QTF curves. Our simulation shows that the clock-pump regnerator is capable of improving the Q-facor and receiver sensitivity for 40 Gbit/s ASE-degraded return-to-zero on-off keying(RZ-OOK) signal by 2.58 dB and 4.2 d B, respectively. 展开更多
关键词 Q-factor improvement of degenerate four-wave-mixing regenerators for ASE degraded signals PTF ASE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部