The high water content of corn grain at harvest is a challenge in Northeast China,where the growing season is short.Using a dehydrating agent before harvest can help corn seeds dehydrate quickly.The dry matter accumul...The high water content of corn grain at harvest is a challenge in Northeast China,where the growing season is short.Using a dehydrating agent before harvest can help corn seeds dehydrate quickly.The dry matter accumulation and nutrient quality of maize were systematically studied by field experiments and instrumental analysis using maize varieties of different maturities as test materials.The results showed that the accumulation of dry matter was enhanced by an increased dosage of a dehydrating agent.When the dehydrating agent dosage reached 1800 mL•hm-2,the dry matter accumulation of early-maturing varieties increased by 24.1 g,and the water content decreased by 8.08%.Different maize varieties were treated with the same dose;early-maturing varieties showed significant effects on grain dry matter accumulation,and kernel dry matter accumulation increased by 7%.The effects of different doses on grain dehydration were obvious,and the effects on different maize varieties varied.Medium-ripening maize varieties showed the most significant effect,with a 19.5%reduction in water content.The effects of dehydrating agent doses on maize yield,grain nutrient quality and seed germination rate were not significant.Therefore,a dehydrating agent promoted the accumulation of dry matter in grain and accelerated the rapid dehydration.展开更多
The influence of the dehydration by metal oxides on the synthesis of dimethyl carbonate (DMC) via oxidative carbonylation of methanol was studied. A Cu/Y-zeolite catalyst was prepared by the ion exchange method from...The influence of the dehydration by metal oxides on the synthesis of dimethyl carbonate (DMC) via oxidative carbonylation of methanol was studied. A Cu/Y-zeolite catalyst was prepared by the ion exchange method from CuCl2.2H2O and the commercial NH4-form of the Y type zeolite, The catalyst was characterized by X-ray fluorescence (XRF), N2 adsorption (BET method), X-ray diffraction (XRD), and temperature-programmed de- sorption of ammonia (NH3-TPD) to evaluate its Cu and Cl content, surface area, structure, and acidity. Reaction tests were carried out using an autoclave (batch reactor) for 18 h at 403 K and 5.5 MPa (2CH3OH + 1/2O2 + CO (CH3O)2CO + H2O). The influence of various dehydrating agents (ZnO, MgO, and CaO) was examined with the aim of increasing the methanol conversion (XMeOH, MeOH conversion). The MeOH conversion increased upon addition of metal oxides in the order CaO 〉〉 MgO 〉 ZnO, with the DMC selectivity (SDMC) following the order MgO 〉 CaO 〉 ZnO. The catalysts and dehydrating agents were characterized before and after the oxidative carbonylation of methanol by thermogravimetric and differential thermogravimetric (TG/DTG), and XRD to con- firm that the dehydration reaction occurred via the metal oxide (MO + H2O →M(OH)2). The MeOH conversion increased from 8.7% to 14.6% and DMC selectivity increased from 39.0% to 53.1%, when using the dehydrating azent CaO.展开更多
基金Supported by the Research and Development Plan of Applied Technology in Heilongjiang Province(GA19B104)。
文摘The high water content of corn grain at harvest is a challenge in Northeast China,where the growing season is short.Using a dehydrating agent before harvest can help corn seeds dehydrate quickly.The dry matter accumulation and nutrient quality of maize were systematically studied by field experiments and instrumental analysis using maize varieties of different maturities as test materials.The results showed that the accumulation of dry matter was enhanced by an increased dosage of a dehydrating agent.When the dehydrating agent dosage reached 1800 mL•hm-2,the dry matter accumulation of early-maturing varieties increased by 24.1 g,and the water content decreased by 8.08%.Different maize varieties were treated with the same dose;early-maturing varieties showed significant effects on grain dry matter accumulation,and kernel dry matter accumulation increased by 7%.The effects of different doses on grain dehydration were obvious,and the effects on different maize varieties varied.Medium-ripening maize varieties showed the most significant effect,with a 19.5%reduction in water content.The effects of dehydrating agent doses on maize yield,grain nutrient quality and seed germination rate were not significant.Therefore,a dehydrating agent promoted the accumulation of dry matter in grain and accelerated the rapid dehydration.
文摘The influence of the dehydration by metal oxides on the synthesis of dimethyl carbonate (DMC) via oxidative carbonylation of methanol was studied. A Cu/Y-zeolite catalyst was prepared by the ion exchange method from CuCl2.2H2O and the commercial NH4-form of the Y type zeolite, The catalyst was characterized by X-ray fluorescence (XRF), N2 adsorption (BET method), X-ray diffraction (XRD), and temperature-programmed de- sorption of ammonia (NH3-TPD) to evaluate its Cu and Cl content, surface area, structure, and acidity. Reaction tests were carried out using an autoclave (batch reactor) for 18 h at 403 K and 5.5 MPa (2CH3OH + 1/2O2 + CO (CH3O)2CO + H2O). The influence of various dehydrating agents (ZnO, MgO, and CaO) was examined with the aim of increasing the methanol conversion (XMeOH, MeOH conversion). The MeOH conversion increased upon addition of metal oxides in the order CaO 〉〉 MgO 〉 ZnO, with the DMC selectivity (SDMC) following the order MgO 〉 CaO 〉 ZnO. The catalysts and dehydrating agents were characterized before and after the oxidative carbonylation of methanol by thermogravimetric and differential thermogravimetric (TG/DTG), and XRD to con- firm that the dehydration reaction occurred via the metal oxide (MO + H2O →M(OH)2). The MeOH conversion increased from 8.7% to 14.6% and DMC selectivity increased from 39.0% to 53.1%, when using the dehydrating azent CaO.