An integrated tetrahedrization algorithm in 3D domain which combines the Delaunay tetrahedral method with un-Delaunay tetrahedral method is described. The algorithm was developed by constructing Delaunay Tetrahedrons ...An integrated tetrahedrization algorithm in 3D domain which combines the Delaunay tetrahedral method with un-Delaunay tetrahedral method is described. The algorithm was developed by constructing Delaunay Tetrahedrons from a scattered point set, recovering boundaries using Delaunay and un-Delaunay method, inserting additional nodes in unsuitable tetrahedrons, optimizing tetrahedrons and smoothing the tetrahedral mesh with the 2D-3D Laplacian method. The algorithm has been applied to the injection molding CAE preprocessing.展开更多
This paper presents a reconstruction algorithm to build a surface mesh approximating an object from an unorganized point sampling of the boundary object. It combines 3D Delaunay tetrahedralization and mesh-growing met...This paper presents a reconstruction algorithm to build a surface mesh approximating an object from an unorganized point sampling of the boundary object. It combines 3D Delaunay tetrahedralization and mesh-growing method and uses only once Delau- nay triangulation. It begins with 3D Delaunay triangulation of the sampling. Then initialize the surface mesh with seed facets se- lected from Delaunay triangulation. Selection is based on the angle formed by the circumscribing ball of incident tetrahedral. Finally, grow until complete the surface mesh based on some heuristic rules. This paper shows several experimental results that demonstrate this method can handle open and close surfaces and work efficiently on various object topologies except non-manifold surface with self-intersections. It can reproduce even the smallest details of well-sampled surfaces but not work properly in every under-sampled situation that point density is too low.展开更多
文摘An integrated tetrahedrization algorithm in 3D domain which combines the Delaunay tetrahedral method with un-Delaunay tetrahedral method is described. The algorithm was developed by constructing Delaunay Tetrahedrons from a scattered point set, recovering boundaries using Delaunay and un-Delaunay method, inserting additional nodes in unsuitable tetrahedrons, optimizing tetrahedrons and smoothing the tetrahedral mesh with the 2D-3D Laplacian method. The algorithm has been applied to the injection molding CAE preprocessing.
基金Supported by National Natural Science Foundation of China(No.60875046)Program for Changjiang Scholars and Innovative Research Team in University(No.IRT1109)+5 种基金the Key Project of Chinese Ministry of Education(No.209029)the Program for Liaoning Excellent Talents in University(No.LR201003)the Program for Liaoning Science and Technology Research in University(No.LS2010008,2009S008,2009S009, LS2010179)the Program for Liaoning Innovative Research Team in University(Nos.2009T005, LT2010005, LT2011018)Natural Science Foundation of Liaoning Province(201102008)"Liaoning Bai Qian Wan Talents Program(2010921010, 2011921009)"
文摘This paper presents a reconstruction algorithm to build a surface mesh approximating an object from an unorganized point sampling of the boundary object. It combines 3D Delaunay tetrahedralization and mesh-growing method and uses only once Delau- nay triangulation. It begins with 3D Delaunay triangulation of the sampling. Then initialize the surface mesh with seed facets se- lected from Delaunay triangulation. Selection is based on the angle formed by the circumscribing ball of incident tetrahedral. Finally, grow until complete the surface mesh based on some heuristic rules. This paper shows several experimental results that demonstrate this method can handle open and close surfaces and work efficiently on various object topologies except non-manifold surface with self-intersections. It can reproduce even the smallest details of well-sampled surfaces but not work properly in every under-sampled situation that point density is too low.