Adaptive broadband beamforraing is a key issue in array applications. The adaptive broadband beamformer with tapped delay line (TDL) structure for nonuniform linear array (NLA) is designed according to the rule of...Adaptive broadband beamforraing is a key issue in array applications. The adaptive broadband beamformer with tapped delay line (TDL) structure for nonuniform linear array (NLA) is designed according to the rule of minimizing the beamformer's output power while keeping the distortionless response (DR) in the direction of desired signal and keeping the constant beamwidth (CB) with the prescribed sidelobe level over the whole operating band. This kind of beamforming problem can be solved with the interior-point method after being converted to the form of standard second order cone programming (SOCP). The computer simulations are presented which illustrate the effectiveness of our beamformer.展开更多
Frequency-invariant beamformer (FIB) design is a key issue in wideband array signal processing. To use commonly wideband linear array with tapped delay line (TDL) structure and complex weights, the FIB design is p...Frequency-invariant beamformer (FIB) design is a key issue in wideband array signal processing. To use commonly wideband linear array with tapped delay line (TDL) structure and complex weights, the FIB design is provided according to the rule of minimizing the sidelobe level of the beampattern at the reference frequency while keeping the distortionless response constraint in the mainlobe direction at the reference frequency, the norm constraint of the weight vector and the amplitude constraint of the averaged spatial response variation (SRV). This kind of beamformer design problem can be solved with the interior-point method after being converted to the form of standard second order cone programming (SOCP). The computer simulations are presented which illustrate the effectiveness of our FIB design method for the wideband linear array with TDL structure and complex weights.展开更多
The fifth generation (5G) wireless communication is currently a hot research topic and wireless communication systems on high speed railways (HSR) are important applications of 5G technologies. Existing stud- ies ...The fifth generation (5G) wireless communication is currently a hot research topic and wireless communication systems on high speed railways (HSR) are important applications of 5G technologies. Existing stud- ies about 5G wireless systems on high speed railways (HSR) often utilize ideal channel parameters and are usually based on simple scenarios. In this paper, we evaluate the down- link throughput of 5G HSR communication systems on three typical scenarios including urban, cutting and viaduct with three different channel estimators. The channel parameters of each scenario are generated with tapped delay line (TDL) models through ray-tracing sim- ulations, which can be considered as a good match to practical situations. The channel estimators including least square (LS), linear minimum mean square error (LMMSE), and our proposed historical information based ba- sis expansion model (HiBEM). We analyze the performance of the HiBEM estimator in terms of mean square error (MSE) and evaluate the system throughputs with different channel estimates over each scenario. Simulation results are then provided to corroborate our proposed studies. It is shown that our HiBEM estimator outperforms other estimators and that the sys-tem throughput can reach the highest point in the viaduct scenario.展开更多
To design and evaluate vehicle-to-vehicle(V2V)communication systems in intelligent transportation system(ITS),it is important to understand the propagation mechanisms and channel models of V2V channels.This paper aims...To design and evaluate vehicle-to-vehicle(V2V)communication systems in intelligent transportation system(ITS),it is important to understand the propagation mechanisms and channel models of V2V channels.This paper aims to analyze the channel models at 5.2 GHz for the highway environment in obstructed line-of-sight(OLoS)and line-of-sight(LoS)scenarios,particularly the vehicle connectivity probability derivation based on the propagation model obtained from measurement.First,the path loss(PL),shadow fading(SF),narrowband K-factor,and small-scale amplitude fading are analyzed.Results showed that the received signal magnitude follows Rice and Weibull distribution in LoS and OLoS scenarios,respectively.Second,we develop simple and low-complexity tapped delay line(TDL)models with a 10 MHz bandwidth for LoS and OLoS scenarios;in addition,we investigate the wideband K-factor,the root mean square delay spread(RMS-DS),and delay-Doppler spectrum.Third,we derive the closed form connectivity probability between any two vehicles in the presence of Weibull fading channel,and analyze the effects of Weibull fading channel and traffic parameters on connectivity.It is found that Weibull fading parameter,transmit power and vehicle density have positive impact on connectivity probability,PL exponent has negative impact on connectivity probability.展开更多
基金supported by the National Nature Science Foundation of China (60472101)President Award of ChineseAcademy of Sciences(O729031511).
文摘Adaptive broadband beamforraing is a key issue in array applications. The adaptive broadband beamformer with tapped delay line (TDL) structure for nonuniform linear array (NLA) is designed according to the rule of minimizing the beamformer's output power while keeping the distortionless response (DR) in the direction of desired signal and keeping the constant beamwidth (CB) with the prescribed sidelobe level over the whole operating band. This kind of beamforming problem can be solved with the interior-point method after being converted to the form of standard second order cone programming (SOCP). The computer simulations are presented which illustrate the effectiveness of our beamformer.
基金supported by the President Award of Chinese Academy of Sciences (O729031511)
文摘Frequency-invariant beamformer (FIB) design is a key issue in wideband array signal processing. To use commonly wideband linear array with tapped delay line (TDL) structure and complex weights, the FIB design is provided according to the rule of minimizing the sidelobe level of the beampattern at the reference frequency while keeping the distortionless response constraint in the mainlobe direction at the reference frequency, the norm constraint of the weight vector and the amplitude constraint of the averaged spatial response variation (SRV). This kind of beamformer design problem can be solved with the interior-point method after being converted to the form of standard second order cone programming (SOCP). The computer simulations are presented which illustrate the effectiveness of our FIB design method for the wideband linear array with TDL structure and complex weights.
基金supported by the National Natural Science Foundation of China(Grant Nos.61522109,61671253,61571037and 91738201)the Fundamental Research Funds for the Central Universities(No.2016JBZ006)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20150040and BK20171446)the Key Project of Natural Science Research of Higher Education Institutions of Jiangsu Province(No.15KJA510003)
文摘The fifth generation (5G) wireless communication is currently a hot research topic and wireless communication systems on high speed railways (HSR) are important applications of 5G technologies. Existing stud- ies about 5G wireless systems on high speed railways (HSR) often utilize ideal channel parameters and are usually based on simple scenarios. In this paper, we evaluate the down- link throughput of 5G HSR communication systems on three typical scenarios including urban, cutting and viaduct with three different channel estimators. The channel parameters of each scenario are generated with tapped delay line (TDL) models through ray-tracing sim- ulations, which can be considered as a good match to practical situations. The channel estimators including least square (LS), linear minimum mean square error (LMMSE), and our proposed historical information based ba- sis expansion model (HiBEM). We analyze the performance of the HiBEM estimator in terms of mean square error (MSE) and evaluate the system throughputs with different channel estimates over each scenario. Simulation results are then provided to corroborate our proposed studies. It is shown that our HiBEM estimator outperforms other estimators and that the sys-tem throughput can reach the highest point in the viaduct scenario.
基金supported by the National Natural Science Foundation of China(No.61871059)Scientific Innovation Practice Project of Postgraduates of Chang’an University(No.300103722006).
文摘To design and evaluate vehicle-to-vehicle(V2V)communication systems in intelligent transportation system(ITS),it is important to understand the propagation mechanisms and channel models of V2V channels.This paper aims to analyze the channel models at 5.2 GHz for the highway environment in obstructed line-of-sight(OLoS)and line-of-sight(LoS)scenarios,particularly the vehicle connectivity probability derivation based on the propagation model obtained from measurement.First,the path loss(PL),shadow fading(SF),narrowband K-factor,and small-scale amplitude fading are analyzed.Results showed that the received signal magnitude follows Rice and Weibull distribution in LoS and OLoS scenarios,respectively.Second,we develop simple and low-complexity tapped delay line(TDL)models with a 10 MHz bandwidth for LoS and OLoS scenarios;in addition,we investigate the wideband K-factor,the root mean square delay spread(RMS-DS),and delay-Doppler spectrum.Third,we derive the closed form connectivity probability between any two vehicles in the presence of Weibull fading channel,and analyze the effects of Weibull fading channel and traffic parameters on connectivity.It is found that Weibull fading parameter,transmit power and vehicle density have positive impact on connectivity probability,PL exponent has negative impact on connectivity probability.