Wind power technology has been widely used due to its characteristics of environmental protection,sustainability and low cost.The yaw system plays a vital role in improving the energy capture efficiency of a wind turb...Wind power technology has been widely used due to its characteristics of environmental protection,sustainability and low cost.The yaw system plays a vital role in improving the energy capture efficiency of a wind turbine.However,the method of layout determination is lacking in the yaw system.To solve this problem,a method that combines the Delphi method and the analytic hierarchy process was proposed in this study.Twelve evaluation indexes,including transmission efficiency,ratio range,operating temperature range and others,were identified by screening 18 technical indicators using the Delphi method.Subsequently,the evaluation system of the yaw system was established.Then,six configuration schemes were selected.Experts’scores of schemes were collected according to the evaluation system and the score matrix of evaluation indexes was obtained.The hierarchical model of the evaluation indexes of the yaw system was established and the comprehensive weight was obtained by using the analytic hierarchy process.After calculating the comprehensive evaluation score,the comprehensive evaluation result was obtained.The 2Z-X(A)negative mechanism,which achieved the highest score of 0.9227,is the optimal scheme.A new method and specific process are provided for designers.The research gap in the scheme selection method for yaw systems is filled.展开更多
Background:Shoulder-hand syndrome(SHS)is one of the common complications after stroke,which is difficult to cure once it occurs.Early risk identification is an effective measure to prevent and treat SHS,but there is n...Background:Shoulder-hand syndrome(SHS)is one of the common complications after stroke,which is difficult to cure once it occurs.Early risk identification is an effective measure to prevent and treat SHS,but there is no effective tool to assess the risk assessment of SHS.Objective:To develop a validated tool to assess the risk of SHS occurrence after stroke.Methods:This was an observational study with a 3-step process:(1)Literature review to establish initial indicators;(2)Application of a modified Delphi method for two rounds of correspondence,with final indicators obtained by modifying each round based on expert opinion;(3)Application of hierarchical analysis to determine the weights of each indicator.Results:The initial literature review constructed4 primary indicators and 24 secondary indicators;after the first round of Delphi,a total of 10 secondary indicators were deleted and 6 secondary indicators were added,and the final indicators included 3 primary indicators and 15 secondary indicators,and in the second round,consensus was reached;by AHP analysis,the highest weight was given to existing risk factors(0.5584),followed by relevant medical history(0.3196);lastly,demographic factors(0.1220),and the scores of other secondary indicators met the requirements.Conclusion:This study establishes and constructs a post-stroke SHS risk assessment tool,which provides a basis for early identification of SHS and early intervention.Meanwhile,this study provides a methodological reference for the development of other indicatorssets.展开更多
As a difficult problem, sidewall instability has been beset drilling workers all the time. Not only does it cause huge economic losses, but also it determines the success or failure of drilling engineering. Due to com...As a difficult problem, sidewall instability has been beset drilling workers all the time. Not only does it cause huge economic losses, but also it determines the success or failure of drilling engineering. Due to complex relationship between various factors which influence sidewall stability, it hasn’t been found a widely applied method to predicate sidewall stability so far. Therefore, in order to formulate corresponding measures to ensure successful drilling, searching for a kind of better method to forecast sidewall stability before drilling becomes an imperative and significant topic for drilling engineering. On the basis of traditional sidewall stability analytical method, we have put forward the Fuzzy Comprehensive Evaluation Method to forecast sidewall stability regulation using physico-chemical performance parameters of the clay mineral. This method has been improved by introducing the Analytic Hierarchy Process (AHP) and the Maximum Subjection Principle in the application process. After introducing Analytic Hierarchy Process to identify weight, and Maximum Subjection Principle to obtain evaluation results, it has reduced the influence of human factors and enhanced the accuracy of the fuzzy evaluation results. The application in Hailaer Area indicates that this method can predict sidewall stability of gas-oil well with high credibility and strong practicability.展开更多
The index system, code system, and weights of indexes are established to assess the effects of green construction. The index system consists of index level, factor level and sub-factor level. The analytic hierarchy pr...The index system, code system, and weights of indexes are established to assess the effects of green construction. The index system consists of index level, factor level and sub-factor level. The analytic hierarchy process is used to determine the weights of indexes, and the consistency test indicate that the weight assignment is reasonable. Using fuzzy synthetic judgment method, the assessment model is built, which includes factor set, weight set and conclusion set. An example is given to demonstrate the assessment procedures.展开更多
Food waste generation is a pressing issue that requires urgent attention and concerted efforts worldwide.The staggering amount of food wasted each year not only wastes valuable resources but also exacerbates environme...Food waste generation is a pressing issue that requires urgent attention and concerted efforts worldwide.The staggering amount of food wasted each year not only wastes valuable resources but also exacerbates environmental,economic,and social challenges.Food Waste Management(FWM)consists of a complex array of criteria and sub-criteria,and treatments which seems interdependent.There is a need to evaluate the FWM with the help of important criteria and sub-criteria and treatments to address this challenge.In this study,we identified four important criteria,21 sub-criteria,and four alternatives of FWM for the case of Malaysia using the integrated approach of literature review and expert opinions.Further,we employed the approach of Modified Fuzzy Improved Analytical Hierarchy Process(IAHP)to corroborate the interrelationships among the identified criteria and sub-criteria,and their associated treatments.This study undertakes linear normalization methods to transform data into comparable numerical values and the Geometric Mean method to handle uncertainty in human judgments.Moreover,the Centroid method is employed to convert fuzzy weights into crisp sets for ease of interpretation.The results indicate that environmental is the most essential criterion,followed by social,economic,and technical.In addition,air and water pollution is identified as the most critical sub-criteria.Black Soldier Fly is discovered as the most sustainable FWM treatment,since it performs the best while meeting all the criteria and sub-criteria assessed.Sensitivity analysis demonstrates that the outputs from the proposed method are robust and reliable.The finding suggests a proper and robust approach to help decision-makers select suitable FWM treatments to tackle various criteria and alternatives especially when handling inconsistent and uncertain judgments during evaluation.展开更多
Human error(HE) is the most important factor influencing on structural safety because its effect often exceeds the random deviation.Large numbers of facts have shown that structural failures may be caused by the gross...Human error(HE) is the most important factor influencing on structural safety because its effect often exceeds the random deviation.Large numbers of facts have shown that structural failures may be caused by the gross error due to HE.So it is essential to analyze HE in construction.The crucial work of human error analysis(HEA) is the estimation of human error probability(HEP) in construction.The method for estimating HEP,analytic hierarchy process and failure likelihood index method(AHP-FLIM),is introduced in this paper.The method also uses the process of expert judgment within the failure likelihood index method(FLIM).A numerical example shows the effectiveness of the methods proposed.展开更多
The kinematic accuracy of space manipulator determines whether the spacecraft performs normally or not. Problems pertaining to structural deformation have received increased attention in recent times. In the space man...The kinematic accuracy of space manipulator determines whether the spacecraft performs normally or not. Problems pertaining to structural deformation have received increased attention in recent times. In the space manipulator systems, flexible arms and joints can induce drastic dynamic instabilities. In applications such as the space station, kinematic error due to structural deformation can jointly affect the performance characteristics. And it is crucial for accuracy control of space manipulator to establish a precision index. Here we analyze the dynamics characteristic of flexible space manipulator considering the hysteresis of harmonic reducer based on method of nonconstraint boundary modal. For the sake of describing the output accuracy, we integrate the method of analytic hierarchy process(AHP) to establish a comprehensive evaluation index. A numerical simulation is performed to analyze the nonlinear dynamic characteristics of space manipulator with harmonic reducer. With the analysis of accuracy assessment, the relation among the hysteresis angle, rigidity and output accuracy is revealed. Considering the elastic modulus of flexible space manipulator and the hysteresis angle of harmonic reducer, we conduct an evaluation of output characteristics of flexible space manipulator with the proposed comprehensive evaluation index. The accuracy evaluation of output characteristics based on the proposed comprehensive evaluation index is implemented in the initial stage of space manipulator's design, which can not only solve the problems existing in the design but also save cost savings for ground tests. The results can be used in designing and optimizing future space manipulators, which may provide valuable references for design and thermal control of the space manipulator.展开更多
Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Call...Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Calligraphy and seal engraving,as two closely related systems in traditional Chinese art,have developed through the ages.Due to changes in lifestyle and advancements in modern technology,their original functions of daily writing and verification have gradually diminished.Instead,they have increasingly played a significant role in commercial art.This study utilizes the Evaluation Grid Method(EGM)and the Analytic Hierarchy Process(AHP)to research the key preference factors in the application of calligraphy and seal engraving imagery.Different from the traditional 5-point equal interval semantic questionnaire,this study employs a non-equal interval semantic questionnaire with a golden ratio scale,distinguishing the importance ratio of adjacent semantic meanings and highlighting the weighted emphasis on visual aesthetics.Additionally,the study uses Importance-Performance Analysis(IPA)and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)to obtain the key preference sequence of calligraphy and seal engraving culture.Plus,the Choquet integral comprehensive evaluation is used as a reference for IPA comparison.It is hoped that this study can provide cultural imagery references and research methods,injecting further creativity into industrial design.展开更多
Alunite is the most important non bauxite resource for alumina. Various methods have been proposed and patented for processing alunite, but none has been performed at industrial scale and no technical,operational and ...Alunite is the most important non bauxite resource for alumina. Various methods have been proposed and patented for processing alunite, but none has been performed at industrial scale and no technical,operational and economic data is available to evaluate methods. In addition, selecting the right approach for alunite beneficiation, requires introducing a wide range of criteria and careful analysis of alternatives.In this research, after studying the existing processes, 13 methods were considered and evaluated by 14 technical, economic and environmental analyzing criteria. Due to multiplicity of processing methods and attributes, in this paper, Multi Attribute Decision Making methods were employed to examine the appropriateness of choices. The Delphi Analytical Hierarchy Process(DAHP) was used for weighting selection criteria and Fuzzy TOPSIS approach was used to determine the most profitable candidates. Among 13 studied methods, Spanish, Svoronos and Hazan methods were respectively recognized to be the best choices.展开更多
Historical and cultural blocks are witnesses of history and inheritors of culture. As one of the main spaces for outdoor interaction in historical and cultural blocks, the improvement of its vitality is of great signi...Historical and cultural blocks are witnesses of history and inheritors of culture. As one of the main spaces for outdoor interaction in historical and cultural blocks, the improvement of its vitality is of great significance for the improvement of residential environment and the better inheritance of history and culture. Taking Daopashi Street in Anqing City as an example, an evaluation model of landscape spatial vitality of historical and cultural blocks was constructed from three aspects of viewing function, store status and service facilities, and analytic hierarchy process was used to determine the index weight and vaguely evaluate the landscape spatial vitality of historical and cultural blocks. The results show that through the comparison of weight, architectural style(0.317), the practicability of service facilities(0.168) and plant landscape(0.165) had a significant impact on the landscape spatial vitality of historical and cultural blocks,and the landscape spatial vitality of historical and cultural blocks in Daopashi Street in Anqing City was at a good level.展开更多
基金supported by the Sichuan University-Dazhou Municipal People’s Government Strategic Cooperation Special Funds Project of China(2022CDDZ-08).
文摘Wind power technology has been widely used due to its characteristics of environmental protection,sustainability and low cost.The yaw system plays a vital role in improving the energy capture efficiency of a wind turbine.However,the method of layout determination is lacking in the yaw system.To solve this problem,a method that combines the Delphi method and the analytic hierarchy process was proposed in this study.Twelve evaluation indexes,including transmission efficiency,ratio range,operating temperature range and others,were identified by screening 18 technical indicators using the Delphi method.Subsequently,the evaluation system of the yaw system was established.Then,six configuration schemes were selected.Experts’scores of schemes were collected according to the evaluation system and the score matrix of evaluation indexes was obtained.The hierarchical model of the evaluation indexes of the yaw system was established and the comprehensive weight was obtained by using the analytic hierarchy process.After calculating the comprehensive evaluation score,the comprehensive evaluation result was obtained.The 2Z-X(A)negative mechanism,which achieved the highest score of 0.9227,is the optimal scheme.A new method and specific process are provided for designers.The research gap in the scheme selection method for yaw systems is filled.
基金This research was supported by Harbin Medical University Innovative Scientific Research Funding Project(No.2020-kyywf-1487).
文摘Background:Shoulder-hand syndrome(SHS)is one of the common complications after stroke,which is difficult to cure once it occurs.Early risk identification is an effective measure to prevent and treat SHS,but there is no effective tool to assess the risk assessment of SHS.Objective:To develop a validated tool to assess the risk of SHS occurrence after stroke.Methods:This was an observational study with a 3-step process:(1)Literature review to establish initial indicators;(2)Application of a modified Delphi method for two rounds of correspondence,with final indicators obtained by modifying each round based on expert opinion;(3)Application of hierarchical analysis to determine the weights of each indicator.Results:The initial literature review constructed4 primary indicators and 24 secondary indicators;after the first round of Delphi,a total of 10 secondary indicators were deleted and 6 secondary indicators were added,and the final indicators included 3 primary indicators and 15 secondary indicators,and in the second round,consensus was reached;by AHP analysis,the highest weight was given to existing risk factors(0.5584),followed by relevant medical history(0.3196);lastly,demographic factors(0.1220),and the scores of other secondary indicators met the requirements.Conclusion:This study establishes and constructs a post-stroke SHS risk assessment tool,which provides a basis for early identification of SHS and early intervention.Meanwhile,this study provides a methodological reference for the development of other indicatorssets.
文摘As a difficult problem, sidewall instability has been beset drilling workers all the time. Not only does it cause huge economic losses, but also it determines the success or failure of drilling engineering. Due to complex relationship between various factors which influence sidewall stability, it hasn’t been found a widely applied method to predicate sidewall stability so far. Therefore, in order to formulate corresponding measures to ensure successful drilling, searching for a kind of better method to forecast sidewall stability before drilling becomes an imperative and significant topic for drilling engineering. On the basis of traditional sidewall stability analytical method, we have put forward the Fuzzy Comprehensive Evaluation Method to forecast sidewall stability regulation using physico-chemical performance parameters of the clay mineral. This method has been improved by introducing the Analytic Hierarchy Process (AHP) and the Maximum Subjection Principle in the application process. After introducing Analytic Hierarchy Process to identify weight, and Maximum Subjection Principle to obtain evaluation results, it has reduced the influence of human factors and enhanced the accuracy of the fuzzy evaluation results. The application in Hailaer Area indicates that this method can predict sidewall stability of gas-oil well with high credibility and strong practicability.
基金The Doctoral Program of Higher Educa-tion Institution of China (No.20050487017)
文摘The index system, code system, and weights of indexes are established to assess the effects of green construction. The index system consists of index level, factor level and sub-factor level. The analytic hierarchy process is used to determine the weights of indexes, and the consistency test indicate that the weight assignment is reasonable. Using fuzzy synthetic judgment method, the assessment model is built, which includes factor set, weight set and conclusion set. An example is given to demonstrate the assessment procedures.
基金This research work was funded and supported under UUM,Development and Ecosystem Research Grant Scheme(Code:14246).
文摘Food waste generation is a pressing issue that requires urgent attention and concerted efforts worldwide.The staggering amount of food wasted each year not only wastes valuable resources but also exacerbates environmental,economic,and social challenges.Food Waste Management(FWM)consists of a complex array of criteria and sub-criteria,and treatments which seems interdependent.There is a need to evaluate the FWM with the help of important criteria and sub-criteria and treatments to address this challenge.In this study,we identified four important criteria,21 sub-criteria,and four alternatives of FWM for the case of Malaysia using the integrated approach of literature review and expert opinions.Further,we employed the approach of Modified Fuzzy Improved Analytical Hierarchy Process(IAHP)to corroborate the interrelationships among the identified criteria and sub-criteria,and their associated treatments.This study undertakes linear normalization methods to transform data into comparable numerical values and the Geometric Mean method to handle uncertainty in human judgments.Moreover,the Centroid method is employed to convert fuzzy weights into crisp sets for ease of interpretation.The results indicate that environmental is the most essential criterion,followed by social,economic,and technical.In addition,air and water pollution is identified as the most critical sub-criteria.Black Soldier Fly is discovered as the most sustainable FWM treatment,since it performs the best while meeting all the criteria and sub-criteria assessed.Sensitivity analysis demonstrates that the outputs from the proposed method are robust and reliable.The finding suggests a proper and robust approach to help decision-makers select suitable FWM treatments to tackle various criteria and alternatives especially when handling inconsistent and uncertain judgments during evaluation.
文摘Human error(HE) is the most important factor influencing on structural safety because its effect often exceeds the random deviation.Large numbers of facts have shown that structural failures may be caused by the gross error due to HE.So it is essential to analyze HE in construction.The crucial work of human error analysis(HEA) is the estimation of human error probability(HEP) in construction.The method for estimating HEP,analytic hierarchy process and failure likelihood index method(AHP-FLIM),is introduced in this paper.The method also uses the process of expert judgment within the failure likelihood index method(FLIM).A numerical example shows the effectiveness of the methods proposed.
文摘The kinematic accuracy of space manipulator determines whether the spacecraft performs normally or not. Problems pertaining to structural deformation have received increased attention in recent times. In the space manipulator systems, flexible arms and joints can induce drastic dynamic instabilities. In applications such as the space station, kinematic error due to structural deformation can jointly affect the performance characteristics. And it is crucial for accuracy control of space manipulator to establish a precision index. Here we analyze the dynamics characteristic of flexible space manipulator considering the hysteresis of harmonic reducer based on method of nonconstraint boundary modal. For the sake of describing the output accuracy, we integrate the method of analytic hierarchy process(AHP) to establish a comprehensive evaluation index. A numerical simulation is performed to analyze the nonlinear dynamic characteristics of space manipulator with harmonic reducer. With the analysis of accuracy assessment, the relation among the hysteresis angle, rigidity and output accuracy is revealed. Considering the elastic modulus of flexible space manipulator and the hysteresis angle of harmonic reducer, we conduct an evaluation of output characteristics of flexible space manipulator with the proposed comprehensive evaluation index. The accuracy evaluation of output characteristics based on the proposed comprehensive evaluation index is implemented in the initial stage of space manipulator's design, which can not only solve the problems existing in the design but also save cost savings for ground tests. The results can be used in designing and optimizing future space manipulators, which may provide valuable references for design and thermal control of the space manipulator.
文摘Classical Chinese characters,presented through calligraphy,seal engraving,or painting,can exhibit different aesthetics and essences of Chinese characters,making them the most important asset of the Chinese people.Calligraphy and seal engraving,as two closely related systems in traditional Chinese art,have developed through the ages.Due to changes in lifestyle and advancements in modern technology,their original functions of daily writing and verification have gradually diminished.Instead,they have increasingly played a significant role in commercial art.This study utilizes the Evaluation Grid Method(EGM)and the Analytic Hierarchy Process(AHP)to research the key preference factors in the application of calligraphy and seal engraving imagery.Different from the traditional 5-point equal interval semantic questionnaire,this study employs a non-equal interval semantic questionnaire with a golden ratio scale,distinguishing the importance ratio of adjacent semantic meanings and highlighting the weighted emphasis on visual aesthetics.Additionally,the study uses Importance-Performance Analysis(IPA)and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)to obtain the key preference sequence of calligraphy and seal engraving culture.Plus,the Choquet integral comprehensive evaluation is used as a reference for IPA comparison.It is hoped that this study can provide cultural imagery references and research methods,injecting further creativity into industrial design.
文摘Alunite is the most important non bauxite resource for alumina. Various methods have been proposed and patented for processing alunite, but none has been performed at industrial scale and no technical,operational and economic data is available to evaluate methods. In addition, selecting the right approach for alunite beneficiation, requires introducing a wide range of criteria and careful analysis of alternatives.In this research, after studying the existing processes, 13 methods were considered and evaluated by 14 technical, economic and environmental analyzing criteria. Due to multiplicity of processing methods and attributes, in this paper, Multi Attribute Decision Making methods were employed to examine the appropriateness of choices. The Delphi Analytical Hierarchy Process(DAHP) was used for weighting selection criteria and Fuzzy TOPSIS approach was used to determine the most profitable candidates. Among 13 studied methods, Spanish, Svoronos and Hazan methods were respectively recognized to be the best choices.
基金the Research on the Application of the Perception Teaching of“Graphics”in Architectural Design Course(JZ213702)Landscape Architecture Stracture(JZ213704)+1 种基金Research on the Teaching of Architectural Design Course for Urban and Rural Planning Major with the concept of“Local Design”(JZ223706)Anhui Provincial Key Laboratory of Huizhou Architecture Open Subjects Funding Project(HPJZ-2020-03).
文摘Historical and cultural blocks are witnesses of history and inheritors of culture. As one of the main spaces for outdoor interaction in historical and cultural blocks, the improvement of its vitality is of great significance for the improvement of residential environment and the better inheritance of history and culture. Taking Daopashi Street in Anqing City as an example, an evaluation model of landscape spatial vitality of historical and cultural blocks was constructed from three aspects of viewing function, store status and service facilities, and analytic hierarchy process was used to determine the index weight and vaguely evaluate the landscape spatial vitality of historical and cultural blocks. The results show that through the comparison of weight, architectural style(0.317), the practicability of service facilities(0.168) and plant landscape(0.165) had a significant impact on the landscape spatial vitality of historical and cultural blocks,and the landscape spatial vitality of historical and cultural blocks in Daopashi Street in Anqing City was at a good level.