The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ...The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.展开更多
In addition to the tens of millions of medical doses consumed annually around the world,a vast number of nuclear magnetic resonance imaging(MRI)contrast agents are being deployed in MRI research and development,offeri...In addition to the tens of millions of medical doses consumed annually around the world,a vast number of nuclear magnetic resonance imaging(MRI)contrast agents are being deployed in MRI research and development,offering precise diagnostic information,targeting capabilities,and analyte sensing.Superparamagnetic iron oxide nanoparticles(SPIONs)are notable among these agents,providing effective and versatile MRI applications while also being heavy-metal-free,bioconjugatable,and theranostic.We designed and implemented a novel two-pronged computational and experimental strategy to meet the demand for the efficient and rigorous development of SPION-based MRI agents.Our MATLAB-based modeling simulation and magnetic characterization revealed that extremely small maghemite SPIONs in the 1-3 nm range possess significantly reduced transversal relaxation rates(R_(2))and are therefore preferred for positive(T_(1)-weighted)MRI.Moreover,X-ray diffraction and X-ray absorption fine structure analyses demonstrated that the diffraction pattern and radial distribution function of our SPIONs matched those of the targeted maghemite crystals.In addition,simulations of the X-ray near-edge structure spectra indicated that our synthesized SPIONs,even at 1 nm,maintained a spherical structure.Furthermore,in vitro and in vivo MRI investigations showed that our 1-nm SPIONs effectively highlighted whole-body blood vessels and major organs in mice and could be cleared through the kidney route to minimize potential post-imaging side effects.Overall,our innovative approach enabled a swift discovery of the desired SPION structure,followed by targeted synthesis,synchrotron radiation spectroscopic studies,and MRI evaluations.The efficient and rigorous development of our high-performance SPIONs can set the stage for a computational and experimental platform for the development of future MRI agents.展开更多
As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performan...As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performance and service life.In order to explore the vibration control method of the rail grinding vehicle with abrasive belt,the vibration response changes in structural optimization and lightweight design are respectively analyzed through transient response and random vibration simulations in this paper.Firstly,the transient response simulation analysis of the rail grinding vehicle with abrasive belt is carried out under operating conditions and non-operating conditions.Secondly,the vibration control of the grinding vehicle is implemented by setting vibration isolation elements,optimizing the structure,and increasing damping.Thirdly,in order to further explore the dynamic characteristics of the rail grinding vehicle,the random vibration simulation analysis of the grinding vehicle is carried out under the condition of the horizontal irregularity of the American AAR6 track.Finally,by replacing the Q235 steel frame material with 7075 aluminum alloy and LA43M magnesium alloy,both vibration control and lightweight design can be achieved simultaneously.The results of transient dynamic response analysis show that the acceleration of most positions in the two working conditions exceeds the standard value in GB/T 17426-1998 standard.By optimizing the structure of the grinding vehicle in three ways,the average vibration acceleration of the whole car is reduced by about 55.1%from 15.6 m/s^(2) to 7.0 m/s^(2).The results of random vibration analysis show that the grinding vehicle with Q235 steel frame does not meet the safety conditions of 3σ.By changing frame material,the maximum vibration stress of the vehicle can be reduced from 240.7 MPa to 160.0 MPa and the weight of the grinding vehicle is reduced by about 21.7%from 1500 kg to 1175 kg.The modal analysis results indicate that the vibration control of the grinding vehicle can be realized by optimizing the structure and replacing the materials with lower stiffness under the premise of ensuring the overall strength.The study provides the basis for the development of lightweight,diversified and efficient rail grinding equipment.展开更多
Geothermal is a clean energy source that is freely available in the subsurface. The exploitation of this vital resource needs intensive exploration in order to identify and quantify its occurrence. The three parameter...Geothermal is a clean energy source that is freely available in the subsurface. The exploitation of this vital resource needs intensive exploration in order to identify and quantify its occurrence. The three parameters considered when assessing the viability of a geothermal system include;heat source, fractures and fluids. Geological structures are important in transportation of fluids to and from the heat source aiding in recharge of the geothermal system and enhancing productivity. Remote sensing method was applied in mapping the structures at Barrier Volcanic Complex (BVC) by using hill shading technique which utilized four illumination angles of the sun (azimuth) i.e. 45°, 90°, 150°, and 315°, constant elevation of 45° and exaggeration of 10. The data used was Shuttle Radar Topographic Mission (SRTM) Satellite Imagery. ArcGIS Software was used for lineaments delineation and density mapping, PCI Geomatica was used to generate major faults, while Georose and Rockworks 17 were used to generate the rose diagrams. Geological structural analysis was done by delineating lineaments, determining the density distribution of lineaments and finally determining the structural trends of lineaments. The generated major faults in the area and the location of the occurrence of surface manifestations were compared with the generated lineaments. A total of 260 lineaments were generated whereby at 45° there was a total of 60 lineaments, at 90° 95 lineaments, at 150° 61 lineaments, and at 315° 44 lineaments. The results of structural analysis in the area as shown by the rose diagrams indicate an NNE-SSW and N-S trending of structures. In conclusion, the study area is highly fractured as indicated by the presence of numerous lineaments. These lineaments provide good recharge to the geothermal system and enhance the geothermal reservoir in the area.展开更多
This paper addresses the problem of the input design of large-scale complex networks.Two types of network components,redundant inaccessible strongly connected component(RISCC)and intermittent inaccessible strongly con...This paper addresses the problem of the input design of large-scale complex networks.Two types of network components,redundant inaccessible strongly connected component(RISCC)and intermittent inaccessible strongly connected component(IISCC)are defined,and a subnetwork called a driver network is developed.Based on these,an efficient method is proposed to find the minimum number of controlled nodes to achieve structural complete controllability of a network,in the case that each input can act on multiple state nodes.The range of the number of input nodes to achieve minimal control,and the configuration method(the connection between the input nodes and the controlled nodes)are presented.All possible input solutions can be obtained by this method.Moreover,we give an example and some experiments on real-world networks to illustrate the effectiveness of the method.展开更多
The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(...The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(AR)as a precursor by regulating oil bath conditions,followed by one-step thermal decomposition to obtain carbon-coated iron-based composites.Modifying the precursor MIL-88C(Fe)preparation conditions,such as the molar ratio between metal ions and organic ligands(M/O),oil bath temperature,and oil bath time,influenced the phases,graphitization degree,and AR of the derivatives,enabling low filler loading,achieving well-matched impedance,and ensuring outstanding MA properties.The MOF-derivatives 2(MD_(2))/polyvinylidene Difluoride(PVDF),MD_(3)/PVDF,and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt%and as low as 5 wt%.The MD_(2)/PVDF(5 wt%)achieved a maximum effective absorption bandwidth(EAB)of 5.52 GHz(1.90 mm).The MD_(3)/PVDF(10 wt%)possessed a minimum reflection loss(RL_(min))value of−67.4 at 12.56 GHz(2.13 mm).A symmetric gradient honeycomb structure(SGHS)was constructed utilizing the high-frequency structure simulator(HFSS)to further extend the EAB,achieving an EAB of 14.6 GHz and a RL_(min) of−59.0 dB.This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties.展开更多
A finite time controller with PD-like structure for satellite attitude control is proposed in this paper.The controller is constructed with simple structure based on standard PD controller.The fractional order term is...A finite time controller with PD-like structure for satellite attitude control is proposed in this paper.The controller is constructed with simple structure based on standard PD controller.The fractional order term is designed hence system could both have strong robustness and finite time convergence rate,and the advantage of finite time control and PD control is combined in this paper.System convergence rate is discussed by Lyapunov method,and the constraint on control parameters is given by implementing the coupled term of angular velocity and attitude quaternion.Moreover,the accuracy at steady stage depending on control parameters is given hence system could converge to this field within finite time.System stability and performance is demonstrated by numerical simulation results.展开更多
This paper investigates the application of active mass dampers to mitigate the vibrations of building structures subjected to unknown external excitations under controller saturation conditions. By utilizing an H<s...This paper investigates the application of active mass dampers to mitigate the vibrations of building structures subjected to unknown external excitations under controller saturation conditions. By utilizing an H<sub>∞</sub> control strategy, the optimal state feedback controller is derived by solving the linear matrix inequality problem for controller saturation. Case studies show that the proposed controller is capable of stabilizing the closed-loop system with good control performance and effectively suppressing vibrations in building structures under unknown external excitation. When compared to controllers that do not consider saturation, the proposed controller requires lower gain and results in reduced energy consumption. The research findings provide valuable insights for addressing real-world building structure control problems, contributing to both theoretical significance and practical applications.展开更多
This paper analyzes the fuzzy variable structure control algorithms for delay systems and describes the compensation mechanism of the integral factor to the effect of the delay. Based on the linearized model of the co...This paper analyzes the fuzzy variable structure control algorithms for delay systems and describes the compensation mechanism of the integral factor to the effect of the delay. Based on the linearized model of the congestion-avoidance flow-control mode of transmission control protocol (TCP), we present delay control algorithms for active queue management (AQM) and discuss the parameter tuning of the algorithms. The NS (network simulator) simulation results show that the proposed control scheme for the nonlinear TCP/AQM model has good performance and robustness with respect to the uncertainties of the round-trip time (RTT) and the number of active TCP sessions. Compared to other similar schemes, our algorithms perform better in terms of packet loss ratio, throughput and butter fluctuation.展开更多
Active vibration control is an effective way of increasing robustness of the design to meet the stringent accuracy requirements for space structures. This paper presents the results of active damping realized by a pie...Active vibration control is an effective way of increasing robustness of the design to meet the stringent accuracy requirements for space structures. This paper presents the results of active damping realized by a piezoelectric active member to control the vibration of a four-bay four-longern aluminum truss structure with cantilever boundary. The active member, which utilizes a piezoelectric actuating unit and an integrated load cell, is designed for vibration control of the space truss structures. Active damping control is realized using direct velocity feedback around the active member. The placement of the active member as one of the most important factor of affecting the control system performance, is also investigated by modal dissipation energy ratio as indicator. The active damping effectiveness is evaluated by comparing the closed-loop response with the open loop response.展开更多
By analyzing the target's motion pattern, in terms of the requirement for the performance indexes of the follow up system, the structure changing control and time optimal theory is proposed. The system's co...By analyzing the target's motion pattern, in terms of the requirement for the performance indexes of the follow up system, the structure changing control and time optimal theory is proposed. The system's control scheme from three different aspects(the dynamic response simulation, compound control simulation and dynamic tracking simulation) is also studied. And all the results proved the feasibility of the synthetical utilization of the open loop control, speed decreased control and position closed loop control.展开更多
An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structu...An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structure repetitive control (DMRC) so that it can offer superior steady-state performance and good transient features. Unlike the conventional schemes, the proposed scheme-based APF can compensate both the odd and the even order harmonics in grid. The detailed design criteria and the stability analysis of the proposed hybrid current controller are presented. Moreover, an improved structure which incorporates the proposed hybrid controller and the resonant controller for tracking specific order harmonics is given. The relationships between the resonant controller and different repetitive control schemes are discussed. Experimental results verify the effectiveness and advantages of the proposed hybrid control scheme.展开更多
The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (...The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (VSC),two-level and decentralized variable structure control laws for this kind of systems are presented respectively,which achieve asymptotically stabilization despite the uncertainties and disturbances. At last,sirnulation of the disturbed two-pendulum system is given to illustrate the feasibility of proposed technique.展开更多
Ocean wave propagation is slow, visible and measurable, so a wave theory can be used to approximately predict the imminnent wave force on an offshore structure based on measured, real-time wave elevation near the stru...Ocean wave propagation is slow, visible and measurable, so a wave theory can be used to approximately predict the imminnent wave force on an offshore structure based on measured, real-time wave elevation near the structure. This predictability suggests the development of a more efficient algorithm, than those that have been developed for structures under wind and seismic loads, for the active vibration control of offshore structures. The present study delveops a mutiple-step predictive optimal control (MPOC) algorithm that accounts for multiple step external loading in the determination of optimal control forces. The control efficiency of the newly developed MPOC algorithm has been Investigated under both regular (single-frequency) and irregular (multiple-frequency) wave loads, and compared with that of two other well-known optimal control algorithms: classical linear optimal control(CLOC) and instantaneous optimal control(IOC).展开更多
Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to ca...Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.展开更多
Uncertainty is inherent and unavoidable in almost all engineering systems. It is of essential significance to deal with uncertainties by means of reliability approach and to achieve a reasonable balance between reliab...Uncertainty is inherent and unavoidable in almost all engineering systems. It is of essential significance to deal with uncertainties by means of reliability approach and to achieve a reasonable balance between reliability against uncertainties and system performance in the control design of uncertain systems. Nevertheless, reliability methods which can be used directly for analysis and synthesis of active control of structures in the presence of uncertainties remain to be developed, especially in non-probabilistic uncertainty situations. In the present paper, the issue of vibration con- trol of uncertain structures using linear quadratic regulator (LQR) approach is studied from the viewpoint of reliabil- ity. An efficient non-probabilistic robust reliability method for LQR-based static output feedback robust control of un- certain structures is presented by treating bounded uncertain parameters as interval variables. The optimal vibration con- troller design for uncertain structures is carried out by solv- ing a robust reliability-based optimization problem with the objective to minimize the quadratic performance index. The controller obtained may possess optimum performance un- der the condition that the controlled structure is robustly re- liable with respect to admissible uncertainties. The proposed method provides an essential basis for achieving a balance between robustness and performance in controller design ot uncertain structures. The presented formulations are in the framework of linear matrix inequality and can be carried out conveniently. Two numerical examples are provided to illustrate the effectiveness and feasibility of the present method.展开更多
Food safety issues constitute an international topic discussed by many scholars. Although there is an extensive body of literature on comparisons of food safety control practices across different governance structures...Food safety issues constitute an international topic discussed by many scholars. Although there is an extensive body of literature on comparisons of food safety control practices across different governance structures, these studies have been conducted mainly in terms of qualitative and descriptive analysis. In addition, little attention has been given to family farms. This study addresses the food safety control practices adopted by firms with different governance structures in China. Food safety control is expressed by the following aspects, i.e., pollution-free, green, organic, and/or geographical indication prod- ucts certification, establishment of production records, and pesticide residue testing. Three types of governance structures that engage in agricultural production are distinguished: farmer cooperatives, agricultural companies, and family farms. The food safety control practices of various governance structures are investigated based on a database that comprises 600 vegetable and fruit enterprises in Zhejiang, China. The results show that (1) pesticide residue testing is adopted by the most firms, followed by products certification, and production records are adopted by the fewest firms, and (2) agricul- tural companies adopt more food safety control practices than family farms, while farmer cooperatives adopt the fewest food safety control practices. Governance structure features of a cooperative in terms of ownership, decision-making, and income distribution are the main reasons for the low level of food safety control in the cooperative.展开更多
In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The ...In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach.展开更多
The recently proposed mega-sub controlled structure (MSCS), a new type of structure associated with the design and construction of super-tall buildings, has attracted the attention of designers for use in enhancing ...The recently proposed mega-sub controlled structure (MSCS), a new type of structure associated with the design and construction of super-tall buildings, has attracted the attention of designers for use in enhancing the control effectiveness in mega-frame buildings. In this paper, a dynamic equation and method to assemble parameter matrixes for a mega-sub controlled structure under random wind loads is presented. Semi-active control using magnetorheological dampers for the MSCS under random wind loads is investigated, and is compared with a corresponding system without dampers. A parametric study of the relative stiffness ratio and relative mass ratio between the mega-frame and the substructures, as well as the additional column stiffness ratio that influences the response control effectiveness of the MSCS, is discussed. The studies reveal, for the first time, that different control mechanisms exist. The results indicate that the proposed structure employing semi-active control can offer an effective control mechanism. Guidelines for selecting parameters are provided based on the analytical study.展开更多
This study analyzes the community structure, the quantity changes of the algae and the effect of important environmental factors and estimates the total biomass of the attached green algae in the survey areas. The stu...This study analyzes the community structure, the quantity changes of the algae and the effect of important environmental factors and estimates the total biomass of the attached green algae in the survey areas. The study uses data from surveys of the attached green algae on the Porphyra yezoensis aquaculture rafts and data regarding the environmental factors from October 2010 to April 2011 in the Subei Shoal. The attached green algae on the rafts included Ulva prolifera, Capsosiphon groenlandicus, U. linza, U. intestinalis, U. clathrata, and U. cornpressa. The biomass changes of the attached green algae exhibited an inverted parabola: the biomass was the highest (14 898 t) in April, and was the second highest (2 034 t) in November; it was lowest in February (only 729 t) and increased sharply from March to April. The species diversity differed significantly among the seasons. In September and October, when the P. yezoensis aquaculture rafts were initially set up, the attached green algae had a high biodiversity, while from December to the next February, a variety of green algae species coexisted on the rafts, although the biomass was low, and from March to April, as the biomass increased sharply, the species diversity dropped to the minimum. During this time, C. groenlandicus was apparently dominant with the maximum biomass proportion up to 80%, while the U. prolifera proportion increased exponentially to 20% to 40%. The water temperature had a direct regulating effect on the biomass and the species succession of the attached green algae. The estimation of the community dynamics and the biomass of the green algae provided the evidence needed to track the origin of the large-scale green tide in the southern Yellow Sea.展开更多
文摘The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.
基金supported by start-up funds from the laboratory of H.WFaculty Sponsored Student Research Awards(FSSRA)from the Department of Chemistry and Biochemistry in the College of Science and Mathematics at California State University,Fresno。
文摘In addition to the tens of millions of medical doses consumed annually around the world,a vast number of nuclear magnetic resonance imaging(MRI)contrast agents are being deployed in MRI research and development,offering precise diagnostic information,targeting capabilities,and analyte sensing.Superparamagnetic iron oxide nanoparticles(SPIONs)are notable among these agents,providing effective and versatile MRI applications while also being heavy-metal-free,bioconjugatable,and theranostic.We designed and implemented a novel two-pronged computational and experimental strategy to meet the demand for the efficient and rigorous development of SPION-based MRI agents.Our MATLAB-based modeling simulation and magnetic characterization revealed that extremely small maghemite SPIONs in the 1-3 nm range possess significantly reduced transversal relaxation rates(R_(2))and are therefore preferred for positive(T_(1)-weighted)MRI.Moreover,X-ray diffraction and X-ray absorption fine structure analyses demonstrated that the diffraction pattern and radial distribution function of our SPIONs matched those of the targeted maghemite crystals.In addition,simulations of the X-ray near-edge structure spectra indicated that our synthesized SPIONs,even at 1 nm,maintained a spherical structure.Furthermore,in vitro and in vivo MRI investigations showed that our 1-nm SPIONs effectively highlighted whole-body blood vessels and major organs in mice and could be cleared through the kidney route to minimize potential post-imaging side effects.Overall,our innovative approach enabled a swift discovery of the desired SPION structure,followed by targeted synthesis,synchrotron radiation spectroscopic studies,and MRI evaluations.The efficient and rigorous development of our high-performance SPIONs can set the stage for a computational and experimental platform for the development of future MRI agents.
基金Supported by Fundamental Research Funds for the Central Universities of China (Grant No.2023JBZY020)Transformation Cultivation Program of Scientific and Technological Achievements from Beijing Jiaotong University of China (Grant No.M21ZZ200010)。
文摘As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performance and service life.In order to explore the vibration control method of the rail grinding vehicle with abrasive belt,the vibration response changes in structural optimization and lightweight design are respectively analyzed through transient response and random vibration simulations in this paper.Firstly,the transient response simulation analysis of the rail grinding vehicle with abrasive belt is carried out under operating conditions and non-operating conditions.Secondly,the vibration control of the grinding vehicle is implemented by setting vibration isolation elements,optimizing the structure,and increasing damping.Thirdly,in order to further explore the dynamic characteristics of the rail grinding vehicle,the random vibration simulation analysis of the grinding vehicle is carried out under the condition of the horizontal irregularity of the American AAR6 track.Finally,by replacing the Q235 steel frame material with 7075 aluminum alloy and LA43M magnesium alloy,both vibration control and lightweight design can be achieved simultaneously.The results of transient dynamic response analysis show that the acceleration of most positions in the two working conditions exceeds the standard value in GB/T 17426-1998 standard.By optimizing the structure of the grinding vehicle in three ways,the average vibration acceleration of the whole car is reduced by about 55.1%from 15.6 m/s^(2) to 7.0 m/s^(2).The results of random vibration analysis show that the grinding vehicle with Q235 steel frame does not meet the safety conditions of 3σ.By changing frame material,the maximum vibration stress of the vehicle can be reduced from 240.7 MPa to 160.0 MPa and the weight of the grinding vehicle is reduced by about 21.7%from 1500 kg to 1175 kg.The modal analysis results indicate that the vibration control of the grinding vehicle can be realized by optimizing the structure and replacing the materials with lower stiffness under the premise of ensuring the overall strength.The study provides the basis for the development of lightweight,diversified and efficient rail grinding equipment.
文摘Geothermal is a clean energy source that is freely available in the subsurface. The exploitation of this vital resource needs intensive exploration in order to identify and quantify its occurrence. The three parameters considered when assessing the viability of a geothermal system include;heat source, fractures and fluids. Geological structures are important in transportation of fluids to and from the heat source aiding in recharge of the geothermal system and enhancing productivity. Remote sensing method was applied in mapping the structures at Barrier Volcanic Complex (BVC) by using hill shading technique which utilized four illumination angles of the sun (azimuth) i.e. 45°, 90°, 150°, and 315°, constant elevation of 45° and exaggeration of 10. The data used was Shuttle Radar Topographic Mission (SRTM) Satellite Imagery. ArcGIS Software was used for lineaments delineation and density mapping, PCI Geomatica was used to generate major faults, while Georose and Rockworks 17 were used to generate the rose diagrams. Geological structural analysis was done by delineating lineaments, determining the density distribution of lineaments and finally determining the structural trends of lineaments. The generated major faults in the area and the location of the occurrence of surface manifestations were compared with the generated lineaments. A total of 260 lineaments were generated whereby at 45° there was a total of 60 lineaments, at 90° 95 lineaments, at 150° 61 lineaments, and at 315° 44 lineaments. The results of structural analysis in the area as shown by the rose diagrams indicate an NNE-SSW and N-S trending of structures. In conclusion, the study area is highly fractured as indicated by the presence of numerous lineaments. These lineaments provide good recharge to the geothermal system and enhance the geothermal reservoir in the area.
基金supported in part by the National Natural Science Foundation of China(U1808205,62173079)the Natural Science Foundation of Hebei Province of China(F2000501005)。
文摘This paper addresses the problem of the input design of large-scale complex networks.Two types of network components,redundant inaccessible strongly connected component(RISCC)and intermittent inaccessible strongly connected component(IISCC)are defined,and a subnetwork called a driver network is developed.Based on these,an efficient method is proposed to find the minimum number of controlled nodes to achieve structural complete controllability of a network,in the case that each input can act on multiple state nodes.The range of the number of input nodes to achieve minimal control,and the configuration method(the connection between the input nodes and the controlled nodes)are presented.All possible input solutions can be obtained by this method.Moreover,we give an example and some experiments on real-world networks to illustrate the effectiveness of the method.
基金financially supported by the National Natural Science Foundation of China(51972049,52073010,and 52373259)the Projects of the Science and Technology Department of Jilin Province(20230201132GX)the Projects of the Education Department of Jilin Province(JJKH20220123KJ)。
文摘The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(AR)as a precursor by regulating oil bath conditions,followed by one-step thermal decomposition to obtain carbon-coated iron-based composites.Modifying the precursor MIL-88C(Fe)preparation conditions,such as the molar ratio between metal ions and organic ligands(M/O),oil bath temperature,and oil bath time,influenced the phases,graphitization degree,and AR of the derivatives,enabling low filler loading,achieving well-matched impedance,and ensuring outstanding MA properties.The MOF-derivatives 2(MD_(2))/polyvinylidene Difluoride(PVDF),MD_(3)/PVDF,and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt%and as low as 5 wt%.The MD_(2)/PVDF(5 wt%)achieved a maximum effective absorption bandwidth(EAB)of 5.52 GHz(1.90 mm).The MD_(3)/PVDF(10 wt%)possessed a minimum reflection loss(RL_(min))value of−67.4 at 12.56 GHz(2.13 mm).A symmetric gradient honeycomb structure(SGHS)was constructed utilizing the high-frequency structure simulator(HFSS)to further extend the EAB,achieving an EAB of 14.6 GHz and a RL_(min) of−59.0 dB.This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties.
基金supported partially by National Natural Science Foundation of China(Project Nos.61903289 and 62073102)。
文摘A finite time controller with PD-like structure for satellite attitude control is proposed in this paper.The controller is constructed with simple structure based on standard PD controller.The fractional order term is designed hence system could both have strong robustness and finite time convergence rate,and the advantage of finite time control and PD control is combined in this paper.System convergence rate is discussed by Lyapunov method,and the constraint on control parameters is given by implementing the coupled term of angular velocity and attitude quaternion.Moreover,the accuracy at steady stage depending on control parameters is given hence system could converge to this field within finite time.System stability and performance is demonstrated by numerical simulation results.
文摘This paper investigates the application of active mass dampers to mitigate the vibrations of building structures subjected to unknown external excitations under controller saturation conditions. By utilizing an H<sub>∞</sub> control strategy, the optimal state feedback controller is derived by solving the linear matrix inequality problem for controller saturation. Case studies show that the proposed controller is capable of stabilizing the closed-loop system with good control performance and effectively suppressing vibrations in building structures under unknown external excitation. When compared to controllers that do not consider saturation, the proposed controller requires lower gain and results in reduced energy consumption. The research findings provide valuable insights for addressing real-world building structure control problems, contributing to both theoretical significance and practical applications.
文摘This paper analyzes the fuzzy variable structure control algorithms for delay systems and describes the compensation mechanism of the integral factor to the effect of the delay. Based on the linearized model of the congestion-avoidance flow-control mode of transmission control protocol (TCP), we present delay control algorithms for active queue management (AQM) and discuss the parameter tuning of the algorithms. The NS (network simulator) simulation results show that the proposed control scheme for the nonlinear TCP/AQM model has good performance and robustness with respect to the uncertainties of the round-trip time (RTT) and the number of active TCP sessions. Compared to other similar schemes, our algorithms perform better in terms of packet loss ratio, throughput and butter fluctuation.
文摘Active vibration control is an effective way of increasing robustness of the design to meet the stringent accuracy requirements for space structures. This paper presents the results of active damping realized by a piezoelectric active member to control the vibration of a four-bay four-longern aluminum truss structure with cantilever boundary. The active member, which utilizes a piezoelectric actuating unit and an integrated load cell, is designed for vibration control of the space truss structures. Active damping control is realized using direct velocity feedback around the active member. The placement of the active member as one of the most important factor of affecting the control system performance, is also investigated by modal dissipation energy ratio as indicator. The active damping effectiveness is evaluated by comparing the closed-loop response with the open loop response.
文摘By analyzing the target's motion pattern, in terms of the requirement for the performance indexes of the follow up system, the structure changing control and time optimal theory is proposed. The system's control scheme from three different aspects(the dynamic response simulation, compound control simulation and dynamic tracking simulation) is also studied. And all the results proved the feasibility of the synthetical utilization of the open loop control, speed decreased control and position closed loop control.
基金The National Basic Research Program of China(973 Program)(No.2013CB035603)the National Natural Science Foundation of China(No.51007008,51137001)+1 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20100092120043)the Fundamental Research Funds for the Central Universities
文摘An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structure repetitive control (DMRC) so that it can offer superior steady-state performance and good transient features. Unlike the conventional schemes, the proposed scheme-based APF can compensate both the odd and the even order harmonics in grid. The detailed design criteria and the stability analysis of the proposed hybrid current controller are presented. Moreover, an improved structure which incorporates the proposed hybrid controller and the resonant controller for tracking specific order harmonics is given. The relationships between the resonant controller and different repetitive control schemes are discussed. Experimental results verify the effectiveness and advantages of the proposed hybrid control scheme.
文摘The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (VSC),two-level and decentralized variable structure control laws for this kind of systems are presented respectively,which achieve asymptotically stabilization despite the uncertainties and disturbances. At last,sirnulation of the disturbed two-pendulum system is given to illustrate the feasibility of proposed technique.
基金National Science Foundation of U.S.A.under grant CMS-9503533
文摘Ocean wave propagation is slow, visible and measurable, so a wave theory can be used to approximately predict the imminnent wave force on an offshore structure based on measured, real-time wave elevation near the structure. This predictability suggests the development of a more efficient algorithm, than those that have been developed for structures under wind and seismic loads, for the active vibration control of offshore structures. The present study delveops a mutiple-step predictive optimal control (MPOC) algorithm that accounts for multiple step external loading in the determination of optimal control forces. The control efficiency of the newly developed MPOC algorithm has been Investigated under both regular (single-frequency) and irregular (multiple-frequency) wave loads, and compared with that of two other well-known optimal control algorithms: classical linear optimal control(CLOC) and instantaneous optimal control(IOC).
基金Science and Technology Fund of NWPU Under Grant No. M450211 Seed Fund of NWPU Under Grant No. Z200729
文摘Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.
基金supported by the National Natural Science Foundation of China(51175510)
文摘Uncertainty is inherent and unavoidable in almost all engineering systems. It is of essential significance to deal with uncertainties by means of reliability approach and to achieve a reasonable balance between reliability against uncertainties and system performance in the control design of uncertain systems. Nevertheless, reliability methods which can be used directly for analysis and synthesis of active control of structures in the presence of uncertainties remain to be developed, especially in non-probabilistic uncertainty situations. In the present paper, the issue of vibration con- trol of uncertain structures using linear quadratic regulator (LQR) approach is studied from the viewpoint of reliabil- ity. An efficient non-probabilistic robust reliability method for LQR-based static output feedback robust control of un- certain structures is presented by treating bounded uncertain parameters as interval variables. The optimal vibration con- troller design for uncertain structures is carried out by solv- ing a robust reliability-based optimization problem with the objective to minimize the quadratic performance index. The controller obtained may possess optimum performance un- der the condition that the controlled structure is robustly re- liable with respect to admissible uncertainties. The proposed method provides an essential basis for achieving a balance between robustness and performance in controller design ot uncertain structures. The presented formulations are in the framework of linear matrix inequality and can be carried out conveniently. Two numerical examples are provided to illustrate the effectiveness and feasibility of the present method.
基金supported by the National Social Science Fund of China (13AZD079)the Zhejiang Provincial Natural Science Foundation of China (LQ14G030041 and LZ12G03003)the National Natural Science Foundation of China (71333011 and 71273234)
文摘Food safety issues constitute an international topic discussed by many scholars. Although there is an extensive body of literature on comparisons of food safety control practices across different governance structures, these studies have been conducted mainly in terms of qualitative and descriptive analysis. In addition, little attention has been given to family farms. This study addresses the food safety control practices adopted by firms with different governance structures in China. Food safety control is expressed by the following aspects, i.e., pollution-free, green, organic, and/or geographical indication prod- ucts certification, establishment of production records, and pesticide residue testing. Three types of governance structures that engage in agricultural production are distinguished: farmer cooperatives, agricultural companies, and family farms. The food safety control practices of various governance structures are investigated based on a database that comprises 600 vegetable and fruit enterprises in Zhejiang, China. The results show that (1) pesticide residue testing is adopted by the most firms, followed by products certification, and production records are adopted by the fewest firms, and (2) agricul- tural companies adopt more food safety control practices than family farms, while farmer cooperatives adopt the fewest food safety control practices. Governance structure features of a cooperative in terms of ownership, decision-making, and income distribution are the main reasons for the low level of food safety control in the cooperative.
基金supported by National Natural Science Foundationof China (No. 60774017 and No. 60874045)
文摘In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach.
基金Science and Technology Fund of NWPU Under Grant No. M450211Seed Fund of NWPU Under Grant No. Z200534
文摘The recently proposed mega-sub controlled structure (MSCS), a new type of structure associated with the design and construction of super-tall buildings, has attracted the attention of designers for use in enhancing the control effectiveness in mega-frame buildings. In this paper, a dynamic equation and method to assemble parameter matrixes for a mega-sub controlled structure under random wind loads is presented. Semi-active control using magnetorheological dampers for the MSCS under random wind loads is investigated, and is compared with a corresponding system without dampers. A parametric study of the relative stiffness ratio and relative mass ratio between the mega-frame and the substructures, as well as the additional column stiffness ratio that influences the response control effectiveness of the MSCS, is discussed. The studies reveal, for the first time, that different control mechanisms exist. The results indicate that the proposed structure employing semi-active control can offer an effective control mechanism. Guidelines for selecting parameters are provided based on the analytical study.
基金The National Basic Research Program (973 Program) of China under contract No.2010CB428703the National Natural Science Foundation of China under contract No.41306171+3 种基金the National Research Foundation-Shandong Province United Fund under contract No.U1406403the Qingdao Public Domain to Support Science and Technology Project under contract No.13–4–1–68–hythe Marine and Basic Research Funds of the First Institute of Oceanography,SOA under contract No.2015G09MOST International S&T Cooperation Program under contract No.2010DFA24340
文摘This study analyzes the community structure, the quantity changes of the algae and the effect of important environmental factors and estimates the total biomass of the attached green algae in the survey areas. The study uses data from surveys of the attached green algae on the Porphyra yezoensis aquaculture rafts and data regarding the environmental factors from October 2010 to April 2011 in the Subei Shoal. The attached green algae on the rafts included Ulva prolifera, Capsosiphon groenlandicus, U. linza, U. intestinalis, U. clathrata, and U. cornpressa. The biomass changes of the attached green algae exhibited an inverted parabola: the biomass was the highest (14 898 t) in April, and was the second highest (2 034 t) in November; it was lowest in February (only 729 t) and increased sharply from March to April. The species diversity differed significantly among the seasons. In September and October, when the P. yezoensis aquaculture rafts were initially set up, the attached green algae had a high biodiversity, while from December to the next February, a variety of green algae species coexisted on the rafts, although the biomass was low, and from March to April, as the biomass increased sharply, the species diversity dropped to the minimum. During this time, C. groenlandicus was apparently dominant with the maximum biomass proportion up to 80%, while the U. prolifera proportion increased exponentially to 20% to 40%. The water temperature had a direct regulating effect on the biomass and the species succession of the attached green algae. The estimation of the community dynamics and the biomass of the green algae provided the evidence needed to track the origin of the large-scale green tide in the southern Yellow Sea.