In this article, we introduce the concept of demicompactness with respect to a closed densely defined linear operator, as a generalization of the class of demicompact operator introduced by Petryshyn in [24] and we es...In this article, we introduce the concept of demicompactness with respect to a closed densely defined linear operator, as a generalization of the class of demicompact operator introduced by Petryshyn in [24] and we establish some new results in Fredholm theory. Moreover, we apply the obtained results to discuss the incidence of some perturbation results on the behavior of relative essential spectra of unbounded linear operators acting on Banach spaces. We conclude by characterizations of the relative Schechter's and approximate essential spectrum.展开更多
In this paper, we investigate the validity of approximation theorm of K. Fan for a demicompact 1-set-contraction map defined on a closed ball,an annulus and a sphere in cones. From this, we improve all recent results ...In this paper, we investigate the validity of approximation theorm of K. Fan for a demicompact 1-set-contraction map defined on a closed ball,an annulus and a sphere in cones. From this, we improve all recent results of Lin [2]. As applications of our theorems, we discuss the existence of positive solutions to twopoint boundary value-problems of differential equations in Banach space. At the same time, the recent main results of (3) established by Guo Dajun are Generalized and supplemented.展开更多
For a subset K of a metric space (X,d) and x ∈ X,Px(x)={y ∈ K : d(x,y) = d(x,K)≡ inf{d(x,k) : k ∈ K}}is called the set of best K-approximant to x. An element go E K is said to be a best simulta- neous ...For a subset K of a metric space (X,d) and x ∈ X,Px(x)={y ∈ K : d(x,y) = d(x,K)≡ inf{d(x,k) : k ∈ K}}is called the set of best K-approximant to x. An element go E K is said to be a best simulta- neous approximation of the pair y1,y2 E ∈ if max{d(y1,go),d(y2,go)}=inf g∈K max {d(y1,g),d(y2,g)}.In this paper, some results on the existence of common fixed points for Banach operator pairs in the framework of convex metric spaces have been proved. For self mappings T and S on K, results are proved on both T- and S- invariant points for a set of best simultaneous approximation. Some results on best K-approximant are also deduced. The results proved generalize and extend some results of I. Beg and M. Abbas^[1], S. Chandok and T.D. Narang^[2], T.D. Narang and S. Chandok^[11], S.A. Sahab, M.S. Khan and S. Sessa^[14], P. Vijayaraju^[20] and P. Vijayaraju and M. Marudai^[21].展开更多
In this paper,we obtain some new fixed point theorems in fuzzy-Banach spaces by considering the t-norms of h-type and a linear mapping of weakly demicompact.
文摘In this article, we introduce the concept of demicompactness with respect to a closed densely defined linear operator, as a generalization of the class of demicompact operator introduced by Petryshyn in [24] and we establish some new results in Fredholm theory. Moreover, we apply the obtained results to discuss the incidence of some perturbation results on the behavior of relative essential spectra of unbounded linear operators acting on Banach spaces. We conclude by characterizations of the relative Schechter's and approximate essential spectrum.
文摘In this paper, we investigate the validity of approximation theorm of K. Fan for a demicompact 1-set-contraction map defined on a closed ball,an annulus and a sphere in cones. From this, we improve all recent results of Lin [2]. As applications of our theorems, we discuss the existence of positive solutions to twopoint boundary value-problems of differential equations in Banach space. At the same time, the recent main results of (3) established by Guo Dajun are Generalized and supplemented.
文摘For a subset K of a metric space (X,d) and x ∈ X,Px(x)={y ∈ K : d(x,y) = d(x,K)≡ inf{d(x,k) : k ∈ K}}is called the set of best K-approximant to x. An element go E K is said to be a best simulta- neous approximation of the pair y1,y2 E ∈ if max{d(y1,go),d(y2,go)}=inf g∈K max {d(y1,g),d(y2,g)}.In this paper, some results on the existence of common fixed points for Banach operator pairs in the framework of convex metric spaces have been proved. For self mappings T and S on K, results are proved on both T- and S- invariant points for a set of best simultaneous approximation. Some results on best K-approximant are also deduced. The results proved generalize and extend some results of I. Beg and M. Abbas^[1], S. Chandok and T.D. Narang^[2], T.D. Narang and S. Chandok^[11], S.A. Sahab, M.S. Khan and S. Sessa^[14], P. Vijayaraju^[20] and P. Vijayaraju and M. Marudai^[21].
文摘In this paper,we obtain some new fixed point theorems in fuzzy-Banach spaces by considering the t-norms of h-type and a linear mapping of weakly demicompact.