Maritime radar and automatic identification systems (AIS), which are essential auxiliary equipment for navigation safety in the shipping industry, have played significant roles in maritime safety supervision. However,...Maritime radar and automatic identification systems (AIS), which are essential auxiliary equipment for navigation safety in the shipping industry, have played significant roles in maritime safety supervision. However, in practical applications, the information obtained by a single device is limited, and it is necessary to integrate the information of maritime radar and AIS messages to achieve better recognition effects. In this study, the D-S evidence theory is used to fusion the two kinds of heterogeneous information: maritime radar images and AIS messages. Firstly, the radar image and AIS message are processed to get the targets of interest in the same coordinate system. Then, the coordinate position and heading of targets are chosen as the indicators for judging target similarity. Finally, a piece of D-S evidence theory based on the information fusion method is proposed to match the radar target and the AIS target of the same ship. Particularly, the effectiveness of the proposed method has been validated and evaluated through several experiments, which proves that such a method is practical in maritime safety supervision.展开更多
D-S evidence theory provides a good approach to fuse uncertain inlbrmation. In this article, we introduce seismic multi-attribute fusion based on D-S evidence theory to predict the coalbed methane (CBM) concentrated...D-S evidence theory provides a good approach to fuse uncertain inlbrmation. In this article, we introduce seismic multi-attribute fusion based on D-S evidence theory to predict the coalbed methane (CBM) concentrated areas. First, we choose seismic attributes that are most sensitive to CBM content changes with the guidance of CBM content measured at well sites. Then the selected seismic attributes are fused using D-S evidence theory and the fusion results are used to predict CBM-enriched area. The application shows that the predicted CBM content and the measured values are basically consistent. The results indicate that using D-S evidence theory in seismic multi-attribute fusion to predict CBM-enriched areas is feasible.展开更多
The weights of the drought risk index (DRI), which linearly combines the reliability, resiliency, and vulnerability, are difficult to obtain due to complexities in water security during drought periods. Therefore, d...The weights of the drought risk index (DRI), which linearly combines the reliability, resiliency, and vulnerability, are difficult to obtain due to complexities in water security during drought periods. Therefore, drought entropy was used to determine the weights of the three critical indices. Conventional simulation results regarding the risk load of water security during drought periods were often regarded as precise. However, neither the simulation process nor the DRI gives any consideration to uncertainties in drought events. Therefore, the Dempster-Shafer (D-S) evidence theory and the evidential reasoning algorithm were introduced, and the DRI values were calculated with consideration of uncertainties of the three indices. The drought entropy and evidential reasoning algorithm were used in a case study of the Haihe River Basin to assess water security risks during drought periods. The results of the new DRI values in two scenarios were compared and analyzed. It is shown that the values of the DRI in the D-S evidence algorithm increase slightly from the original results of Zhang et al. (2005), and the results of risk assessment of water security during drought periods are reasonable according to the situation in the study area. This study can serve as a reference for further practical application and planning in the Haihe River Basin, and other relevant or similar studies.展开更多
Power transformer is a core equipment of power system, which undertakes the important functions of power transmission and transformation, and its safe and stable operation has great significance to the normal operatio...Power transformer is a core equipment of power system, which undertakes the important functions of power transmission and transformation, and its safe and stable operation has great significance to the normal operation of the whole power system. Due to the complex structure of the transformer, the use of single information for condition-based maintenance (CBM) has certain limitations, with the help of advanced sensor monitoring and information fusion technology, multi-source information is applied to the prognostic and health management (PHM) of power transformer, which is an important way to realize the CBM of power transformer. This paper presents a method which combine deep belief network classifier (DBNC) and D-S evidence theory, and it is applied to the PHM of the large power transformer. The experimental results show that the proposed method has a high correct rate of fault diagnosis for the power transformer with a large number of multi-source data.展开更多
Application of data fusion technique in intrusion detection is the trend of next- generation Intrusion Detection System (IDS). In network security, adopting security early warn- ing technique is feasible to effectivel...Application of data fusion technique in intrusion detection is the trend of next- generation Intrusion Detection System (IDS). In network security, adopting security early warn- ing technique is feasible to effectively defend against attacks and attackers. To do this, correlative information provided by IDS must be gathered and the current intrusion characteristics and sit- uation must be analyzed and estimated. This paper applies D-S evidence theory to distributed intrusion detection system for fusing information from detection centers, making clear intrusion situation, and improving the early warning capability and detection efficiency of the IDS accord- ingly.展开更多
Ubiquitous computing systems typically have lots of security problems in the area of identity authentication by means of classical PKI methods. The limited computing resources, the disconnection network, the classific...Ubiquitous computing systems typically have lots of security problems in the area of identity authentication by means of classical PKI methods. The limited computing resources, the disconnection network, the classification requirements of identity authentication, the requirement of trust transfer and cross identity authentication, the bi-directional identity authentication, the security delegation and the simple privacy protection etc are all these unsolved problems. In this paper, a new novel ubiquitous computing identity authentication mechanism, named UCIAMdess, is presented. It is based on D-S Evidence Theory and extended SPKI/SDSI. D-S Evidence Theory is used in UCIAMdess to compute the trust value from the ubiquitous computing environment to the principal or between the different ubiquitous computing environments. SPKI-based authorization is expanded by adding the trust certificate in UCIAMdess to solve above problems in the ubiquitous computing environments. The identity authentication mechanism and the algorithm of certificate reduction are given in the paper to solve the multi-levels trust-correlative identity authentication problems. The performance analyses show that UCIAMdess is a suitable security mechanism in solving the complex ubiquitous computing problems.展开更多
According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network e...According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS.展开更多
This paper presents an innovative approach for the fault isolation of Light Rail Vehicle (LRV) suspension system based on the Dempster-Shafer (D-S) evidence theory and its improvement application case. The considered ...This paper presents an innovative approach for the fault isolation of Light Rail Vehicle (LRV) suspension system based on the Dempster-Shafer (D-S) evidence theory and its improvement application case. The considered LRV has three rolling stocks and each one equips three sensors for monitoring the suspension system. A Kalman filter is applied to generate the residuals for fault diagnosis. For the purpose of fault isolation, a fault feature database is built in advance. The Eros and the norm distance between the fault feature of the new occurred fault and the one in the feature database are applied to measure the similarity of the feature which is the basis for the basic belief assignment to the fault, respectively. After the basic belief assignments are obtained, they are fused by using the D-S evidence theory. The fusion of the basic belief assignments increases the isolation accuracy significantly. The efficiency of the proposed method is demonstrated by two case studies.展开更多
How to obtain proper prior distribution is one of the most critical problems in Bayesian analysis. In many practical cases, the prior information often comes from different sources, and the prior distribution form cou...How to obtain proper prior distribution is one of the most critical problems in Bayesian analysis. In many practical cases, the prior information often comes from different sources, and the prior distribution form could be easily known in some certain way while the parameters are hard to determine. In this paper, based on the evidence theory, a new method is presented to fuse the information of multiple sources and determine the parameters of the prior distribution when the form is known. By taking the prior distributions which result from the information of multiple sources and converting them into corresponding mass functions which can be combined by Dempster-Shafer (D-S) method, we get the combined mass function and the representative points of the prior distribution. These points are used to fit with the given distribution form to determine the parameters of the prior distribution. And then the fused prior distribution is obtained and Bayesian analysis can be performed. How to convert the prior distributions into mass functions properly and get the representative points of the fused prior distribution is the central question we address in this paper. The simulation example shows that the proposed method is effective.展开更多
In order to make full use of heterogeneous multi-sensor data to serve urban intelligent transportation systems, a real-time urban traffic state fusion model was proposed, named federated evidence fusion model. The mod...In order to make full use of heterogeneous multi-sensor data to serve urban intelligent transportation systems, a real-time urban traffic state fusion model was proposed, named federated evidence fusion model. The model improves conventional D-S evidence theory in temporal domain, such that it can satisfy the requirement of real-time processing and utilize traffic detection information more efficaciously. The model frame and computational procedures are given. In addition, a generalized reliability weight matrix of evidence is also presented to increase the accuracy of estimation. After that, a simulation test is presented to explain the advantage of the proposed method in comparison with conventional D-S evidence theory. Besides, the validity of the model is proven by the use of the data of loop detectors and GPS probe vehicles collected from an urban link in Shanghai. Results of the experiment show that the proposed approach can well embody and track traffic state at character level in real-time conditions.展开更多
How to efficiently measure the distance between two basic probability assignments(BPAs) is an open issue. In this paper, a new method to measure the distance between two BPAs is proposed, based on two existing measu...How to efficiently measure the distance between two basic probability assignments(BPAs) is an open issue. In this paper, a new method to measure the distance between two BPAs is proposed, based on two existing measures of evidence distance. The new proposed method is comprehensive and generalized. Numerical examples are used to illustrate the effectiveness of the proposed method.展开更多
Dempster-Shafer(D-S)evidence theory is a key technology for integrating uncertain information from multiple sources.However,the combination rules can be paradoxical when the evidence seriously conflict with each other...Dempster-Shafer(D-S)evidence theory is a key technology for integrating uncertain information from multiple sources.However,the combination rules can be paradoxical when the evidence seriously conflict with each other.In the paper,we propose a novel combination algorithm based on unsupervised Density-Based Spatial Clustering of Applications with Noise(DBSCAN)density clustering.In the proposed mechanism,firstly,the original evidence sets are preprocessed by DBSCAN density clustering,and a successfully focal element similarity criteria is used to mine the potential information between the evidence,and make a correct measure of the conflict evidence.Then,two different discount factors are adopted to revise the original evidence sets,based on the result of DBSCAN density clustering.Finally,we conduct the information fusion for the revised evidence sets by D-S combination rules.Simulation results show that the proposed method can effectively solve the synthesis problem of high-conflict evidence,with better accuracy,stability and convergence speed.展开更多
With the rapid development of global information and the increasing dependence on network for people, network security problems are becoming more and more serious. By analyzing the existing security assessment methods...With the rapid development of global information and the increasing dependence on network for people, network security problems are becoming more and more serious. By analyzing the existing security assessment methods, we propose a network security situation evaluation system based on modified D-S evidence theory is proposed. Firstly, we give a modified D-S evidence theory to improve the reliability and rationality of the fusion result and apply the theory to correlation analysis. Secondly, the attack successful support is accurately calculated by matching internal factors with external threats. Multi-module evaluation is established to comprehensively evaluate the situation of network security. Finally we use an example of actual network datasets to validate the network security situation evaluation system. The simulation result shows that the system can not only reduce the rate of false positives and false alarms, but also effectively help analysts comprehensively to understand the situation of network security.展开更多
The existing early-warning system in metro construction are generally based on traditional single-sensor data and simple analytic model, which makes it difficult to deal with the complex and comprehensive environment ...The existing early-warning system in metro construction are generally based on traditional single-sensor data and simple analytic model, which makes it difficult to deal with the complex and comprehensive environment in metro construction. In this paper, the framework of early-warning threshold for metro construction collapse risk based on D-S evidence theory and rough set is built. By combining the primary data fusion collected based on rough set with the secondary data fusion which is based on D-S evidence theory, the integration of multiple information in metro construction is realized and the risk assessment methods are optimized. A case trial based on Hangzhou metro construction collapse accident is also carried out to exemplify the framework. The empirical analysis guarantees the completeness and independence of the prediction information, and realizes the dynamic prediction of the variation trend of metro construction collapse risk.展开更多
Technological advancement of measurement systems has enhanced the accuracy of power quality assessment by using a combination of measured information. This paper proposes a novel approach for estimating power quality ...Technological advancement of measurement systems has enhanced the accuracy of power quality assessment by using a combination of measured information. This paper proposes a novel approach for estimating power quality based on information fusion technique of Dempster-Shafer(D-S) evidence theory. First, in order to accurately extract transient features regarding power quality indexes, wavelet packet transform and lifting wavelet transform are proposed to detect various disturbance signals measurement. By using many kinds of transformed transient indexes and steady state indexes, a novel reliability distribution function is constructed,and synthesized assessment index of power quality is drafted based on information fusion technique of D-S evidence theory. Finally,the simulation results prove that D-S evidence theory is a more effective means for evaluating the power quality.展开更多
A comprehensive evaluation method of electric power prediction models using multiple accuracy indicators is proposed.To obtain the preferred models,this paper selects a number of accuracy indicators that can reflect t...A comprehensive evaluation method of electric power prediction models using multiple accuracy indicators is proposed.To obtain the preferred models,this paper selects a number of accuracy indicators that can reflect the accuracy of single-point prediction and the correlation of predicted data,and carries out a comprehensive evaluation.First,according to Dempster-Shafer(D-S)evidence theory,a new accuracy indicator based on the relative error(RE)is proposed to solve the problem that RE is inconsistent with other indicators in the quantity of evaluation values and cannot be adopted at the same time.Next,a new dimensionless method is proposed,which combines the efficiency coefficient method with the extreme value method to unify the accuracy indicator into a dimensionless positive indicator,to avoid the conflict between pieces of evidence caused by the minimum value of zero.On this basis,the evidence fusion is used to obtain the comprehensive evaluation value of each model.Then,the principle and the process of consistency checking of the proposed method using the entropy method and the linear combination formula are described.Finally,the effectiveness and the superiority of the proposed method are validated by an illustrative instance.展开更多
For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertaint...For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertainty of fault states.To overcome these problems,this paper proposes a reliability analysismethod based on T-S fault tree analysis(T-S FTA)and Hyper-ellipsoidal Bayesian network(HE-BN).The method describes the connection between the various systemfault events by T-S fuzzy gates and translates them into a Bayesian network(BN)model.Combining the advantages of T-S fault tree modeling with the advantages of Bayesian network computation,a reliability modeling method is proposed that can fully reflect the fault characteristics of complex systems.Experts describe the degree of failure of the event in the form of interval numbers.The knowledge and experience of experts are fused with the D-S evidence theory to obtain the initial failure probability interval of the BN root node.Then,the Hyper-ellipsoidal model(HM)constrains the initial failure probability interval and constructs a HE-BN for the system.A reliability analysismethod is proposed to solve the problem of insufficient failure data and uncertainty in the degree of failure.The failure probability of the system is further calculated and the key components that affect the system’s reliability are identified.The proposedmethod accounts for the uncertainty and incompleteness of the failure data in complex multi-state systems and establishes an easily computable reliability model that fully reflects the characteristics of complex faults and accurately identifies system weaknesses.The feasibility and accuracy of the method are further verified by conducting case studies.展开更多
Wear topography is a significant indicator of tribological behavior for the inspection of machine health conditions.An intelligent in-suit wear assessment method for random topography is here proposed.Three-dimension(...Wear topography is a significant indicator of tribological behavior for the inspection of machine health conditions.An intelligent in-suit wear assessment method for random topography is here proposed.Three-dimension(3D)topography is employed to address the uncertainties in wear evaluation.Initially,3D topography reconstruction from a worn surface is accomplished with photometric stereo vision(PSV).Then,the wear features are identified by a contrastive learning-based extraction network(WSFE-Net)including the relative and temporal prior knowledge of wear mechanisms.Furthermore,the typical wear degrees including mild,moderate,and severe are evaluated by a wear severity assessment network(WSA-Net)for the probability and its associated uncertainty based on subjective logic.By integrating the evidence information from 2D and 3D-damage surfaces with Dempster–Shafer(D–S)evidence,the uncertainty of severity assessment results is further reduced.The proposed model could constrain the uncertainty below 0.066 in the wear degree evaluation of a continuous wear experiment,which reflects the high credibility of the evaluation result.展开更多
Identifying influential nodes in complex networks is still an open issue. In this paper, a new comprehensive centrality mea- sure is proposed based on the Dempster-Shafer evidence theory. The existing measures of degr...Identifying influential nodes in complex networks is still an open issue. In this paper, a new comprehensive centrality mea- sure is proposed based on the Dempster-Shafer evidence theory. The existing measures of degree centrality, betweenness centra- lity and closeness centrality are taken into consideration in the proposed method. Numerical examples are used to illustrate the effectiveness of the proposed method.展开更多
In this paper,convex optimization theory is introduced into the recognition of communication signals. The detailed content contains three parts. The first part gives a survey of basic concepts,main technology and reco...In this paper,convex optimization theory is introduced into the recognition of communication signals. The detailed content contains three parts. The first part gives a survey of basic concepts,main technology and recognition model of convex optimization theory. Special emphasis is placed on how to set up the new recognition model of communication signals with multisensor reports. The second part gives the solution method of the recognition model,which is called Logarithmic Penalty Barrier Function. The last part gives several numeric simulations,in contrast to D-S evidence inference method,this new method can also generate reasonable recognition results. Moreover,this new method can deal with the form of sensor reports which is more general than that allowed by the D-S evidence inference method,and it has much lower computation complexity than that of D-S evidence inference method. In addition,this new method has better recognition result,stronger anti-interference and robustness. Therefore,the convex optimization methods can be widely used in the recognition of communication signals.展开更多
文摘Maritime radar and automatic identification systems (AIS), which are essential auxiliary equipment for navigation safety in the shipping industry, have played significant roles in maritime safety supervision. However, in practical applications, the information obtained by a single device is limited, and it is necessary to integrate the information of maritime radar and AIS messages to achieve better recognition effects. In this study, the D-S evidence theory is used to fusion the two kinds of heterogeneous information: maritime radar images and AIS messages. Firstly, the radar image and AIS message are processed to get the targets of interest in the same coordinate system. Then, the coordinate position and heading of targets are chosen as the indicators for judging target similarity. Finally, a piece of D-S evidence theory based on the information fusion method is proposed to match the radar target and the AIS target of the same ship. Particularly, the effectiveness of the proposed method has been validated and evaluated through several experiments, which proves that such a method is practical in maritime safety supervision.
基金supported by the National Basic Research Program of China (973 Program) (No. 2009CB219603)Key Special National Project (No. 2008ZX05035)Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘D-S evidence theory provides a good approach to fuse uncertain inlbrmation. In this article, we introduce seismic multi-attribute fusion based on D-S evidence theory to predict the coalbed methane (CBM) concentrated areas. First, we choose seismic attributes that are most sensitive to CBM content changes with the guidance of CBM content measured at well sites. Then the selected seismic attributes are fused using D-S evidence theory and the fusion results are used to predict CBM-enriched area. The application shows that the predicted CBM content and the measured values are basically consistent. The results indicate that using D-S evidence theory in seismic multi-attribute fusion to predict CBM-enriched areas is feasible.
基金supported by the National Natural Science Foundation of China(Grants No.51190094,50909073,and 51179130)the Hubei Province Natural Science Foundation(Grant No.2010CDB08401)
文摘The weights of the drought risk index (DRI), which linearly combines the reliability, resiliency, and vulnerability, are difficult to obtain due to complexities in water security during drought periods. Therefore, drought entropy was used to determine the weights of the three critical indices. Conventional simulation results regarding the risk load of water security during drought periods were often regarded as precise. However, neither the simulation process nor the DRI gives any consideration to uncertainties in drought events. Therefore, the Dempster-Shafer (D-S) evidence theory and the evidential reasoning algorithm were introduced, and the DRI values were calculated with consideration of uncertainties of the three indices. The drought entropy and evidential reasoning algorithm were used in a case study of the Haihe River Basin to assess water security risks during drought periods. The results of the new DRI values in two scenarios were compared and analyzed. It is shown that the values of the DRI in the D-S evidence algorithm increase slightly from the original results of Zhang et al. (2005), and the results of risk assessment of water security during drought periods are reasonable according to the situation in the study area. This study can serve as a reference for further practical application and planning in the Haihe River Basin, and other relevant or similar studies.
文摘Power transformer is a core equipment of power system, which undertakes the important functions of power transmission and transformation, and its safe and stable operation has great significance to the normal operation of the whole power system. Due to the complex structure of the transformer, the use of single information for condition-based maintenance (CBM) has certain limitations, with the help of advanced sensor monitoring and information fusion technology, multi-source information is applied to the prognostic and health management (PHM) of power transformer, which is an important way to realize the CBM of power transformer. This paper presents a method which combine deep belief network classifier (DBNC) and D-S evidence theory, and it is applied to the PHM of the large power transformer. The experimental results show that the proposed method has a high correct rate of fault diagnosis for the power transformer with a large number of multi-source data.
文摘Application of data fusion technique in intrusion detection is the trend of next- generation Intrusion Detection System (IDS). In network security, adopting security early warn- ing technique is feasible to effectively defend against attacks and attackers. To do this, correlative information provided by IDS must be gathered and the current intrusion characteristics and sit- uation must be analyzed and estimated. This paper applies D-S evidence theory to distributed intrusion detection system for fusing information from detection centers, making clear intrusion situation, and improving the early warning capability and detection efficiency of the IDS accord- ingly.
基金Supported by the Ministry of Educationin China (No.104086)
文摘Ubiquitous computing systems typically have lots of security problems in the area of identity authentication by means of classical PKI methods. The limited computing resources, the disconnection network, the classification requirements of identity authentication, the requirement of trust transfer and cross identity authentication, the bi-directional identity authentication, the security delegation and the simple privacy protection etc are all these unsolved problems. In this paper, a new novel ubiquitous computing identity authentication mechanism, named UCIAMdess, is presented. It is based on D-S Evidence Theory and extended SPKI/SDSI. D-S Evidence Theory is used in UCIAMdess to compute the trust value from the ubiquitous computing environment to the principal or between the different ubiquitous computing environments. SPKI-based authorization is expanded by adding the trust certificate in UCIAMdess to solve above problems in the ubiquitous computing environments. The identity authentication mechanism and the algorithm of certificate reduction are given in the paper to solve the multi-levels trust-correlative identity authentication problems. The performance analyses show that UCIAMdess is a suitable security mechanism in solving the complex ubiquitous computing problems.
文摘According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS.
文摘This paper presents an innovative approach for the fault isolation of Light Rail Vehicle (LRV) suspension system based on the Dempster-Shafer (D-S) evidence theory and its improvement application case. The considered LRV has three rolling stocks and each one equips three sensors for monitoring the suspension system. A Kalman filter is applied to generate the residuals for fault diagnosis. For the purpose of fault isolation, a fault feature database is built in advance. The Eros and the norm distance between the fault feature of the new occurred fault and the one in the feature database are applied to measure the similarity of the feature which is the basis for the basic belief assignment to the fault, respectively. After the basic belief assignments are obtained, they are fused by using the D-S evidence theory. The fusion of the basic belief assignments increases the isolation accuracy significantly. The efficiency of the proposed method is demonstrated by two case studies.
文摘How to obtain proper prior distribution is one of the most critical problems in Bayesian analysis. In many practical cases, the prior information often comes from different sources, and the prior distribution form could be easily known in some certain way while the parameters are hard to determine. In this paper, based on the evidence theory, a new method is presented to fuse the information of multiple sources and determine the parameters of the prior distribution when the form is known. By taking the prior distributions which result from the information of multiple sources and converting them into corresponding mass functions which can be combined by Dempster-Shafer (D-S) method, we get the combined mass function and the representative points of the prior distribution. These points are used to fit with the given distribution form to determine the parameters of the prior distribution. And then the fused prior distribution is obtained and Bayesian analysis can be performed. How to convert the prior distributions into mass functions properly and get the representative points of the fused prior distribution is the central question we address in this paper. The simulation example shows that the proposed method is effective.
文摘In order to make full use of heterogeneous multi-sensor data to serve urban intelligent transportation systems, a real-time urban traffic state fusion model was proposed, named federated evidence fusion model. The model improves conventional D-S evidence theory in temporal domain, such that it can satisfy the requirement of real-time processing and utilize traffic detection information more efficaciously. The model frame and computational procedures are given. In addition, a generalized reliability weight matrix of evidence is also presented to increase the accuracy of estimation. After that, a simulation test is presented to explain the advantage of the proposed method in comparison with conventional D-S evidence theory. Besides, the validity of the model is proven by the use of the data of loop detectors and GPS probe vehicles collected from an urban link in Shanghai. Results of the experiment show that the proposed approach can well embody and track traffic state at character level in real-time conditions.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2013AA013801)the National Natural Science Foundation of China(61174022+4 种基金61573290)the open funding project of State Key Laboratory of Virtual Reality Technology and Systemsthe Beihang University(BUAA-VR-14KF-02)the General Research Program of Natural Science of Sichuan Provincial Department of Education(14ZB0322)the Self-financing Program of State Ethnic Affairs Commission of China(14SCZ014)
文摘How to efficiently measure the distance between two basic probability assignments(BPAs) is an open issue. In this paper, a new method to measure the distance between two BPAs is proposed, based on two existing measures of evidence distance. The new proposed method is comprehensive and generalized. Numerical examples are used to illustrate the effectiveness of the proposed method.
文摘Dempster-Shafer(D-S)evidence theory is a key technology for integrating uncertain information from multiple sources.However,the combination rules can be paradoxical when the evidence seriously conflict with each other.In the paper,we propose a novel combination algorithm based on unsupervised Density-Based Spatial Clustering of Applications with Noise(DBSCAN)density clustering.In the proposed mechanism,firstly,the original evidence sets are preprocessed by DBSCAN density clustering,and a successfully focal element similarity criteria is used to mine the potential information between the evidence,and make a correct measure of the conflict evidence.Then,two different discount factors are adopted to revise the original evidence sets,based on the result of DBSCAN density clustering.Finally,we conduct the information fusion for the revised evidence sets by D-S combination rules.Simulation results show that the proposed method can effectively solve the synthesis problem of high-conflict evidence,with better accuracy,stability and convergence speed.
基金Supported by the Foundation of Tianjin for Science and Technology Innovation(10FDZDGX00400,11ZCKFGX00900)Key Project of Educational Reform Foundation of Tianjin Municipal Education Commission(C03-0809)
文摘With the rapid development of global information and the increasing dependence on network for people, network security problems are becoming more and more serious. By analyzing the existing security assessment methods, we propose a network security situation evaluation system based on modified D-S evidence theory is proposed. Firstly, we give a modified D-S evidence theory to improve the reliability and rationality of the fusion result and apply the theory to correlation analysis. Secondly, the attack successful support is accurately calculated by matching internal factors with external threats. Multi-module evaluation is established to comprehensively evaluate the situation of network security. Finally we use an example of actual network datasets to validate the network security situation evaluation system. The simulation result shows that the system can not only reduce the rate of false positives and false alarms, but also effectively help analysts comprehensively to understand the situation of network security.
基金Supported by the National Natural Science Foundation of China(71603284)the Humanity and Social Science Research Foundation of Ministry of Education(16YJC630068)
文摘The existing early-warning system in metro construction are generally based on traditional single-sensor data and simple analytic model, which makes it difficult to deal with the complex and comprehensive environment in metro construction. In this paper, the framework of early-warning threshold for metro construction collapse risk based on D-S evidence theory and rough set is built. By combining the primary data fusion collected based on rough set with the secondary data fusion which is based on D-S evidence theory, the integration of multiple information in metro construction is realized and the risk assessment methods are optimized. A case trial based on Hangzhou metro construction collapse accident is also carried out to exemplify the framework. The empirical analysis guarantees the completeness and independence of the prediction information, and realizes the dynamic prediction of the variation trend of metro construction collapse risk.
基金supported by National Natural Science Foundation of China(No.51177142)Natural Science Foundation of Hebei Province(No.F2012203063)
文摘Technological advancement of measurement systems has enhanced the accuracy of power quality assessment by using a combination of measured information. This paper proposes a novel approach for estimating power quality based on information fusion technique of Dempster-Shafer(D-S) evidence theory. First, in order to accurately extract transient features regarding power quality indexes, wavelet packet transform and lifting wavelet transform are proposed to detect various disturbance signals measurement. By using many kinds of transformed transient indexes and steady state indexes, a novel reliability distribution function is constructed,and synthesized assessment index of power quality is drafted based on information fusion technique of D-S evidence theory. Finally,the simulation results prove that D-S evidence theory is a more effective means for evaluating the power quality.
基金supported by National Key R&D Program of China(No.2016YFB0901405)Guangdong Provincial Science and Technology Planning Project of China(No.2020A0505100004,No.2018A050506069)Guangdong Provincial Special Fund Project for Marine Economic Development of China(No.GDNRC[2020]020)。
文摘A comprehensive evaluation method of electric power prediction models using multiple accuracy indicators is proposed.To obtain the preferred models,this paper selects a number of accuracy indicators that can reflect the accuracy of single-point prediction and the correlation of predicted data,and carries out a comprehensive evaluation.First,according to Dempster-Shafer(D-S)evidence theory,a new accuracy indicator based on the relative error(RE)is proposed to solve the problem that RE is inconsistent with other indicators in the quantity of evaluation values and cannot be adopted at the same time.Next,a new dimensionless method is proposed,which combines the efficiency coefficient method with the extreme value method to unify the accuracy indicator into a dimensionless positive indicator,to avoid the conflict between pieces of evidence caused by the minimum value of zero.On this basis,the evidence fusion is used to obtain the comprehensive evaluation value of each model.Then,the principle and the process of consistency checking of the proposed method using the entropy method and the linear combination formula are described.Finally,the effectiveness and the superiority of the proposed method are validated by an illustrative instance.
基金the National Natural Science Foundation of China(51875073).
文摘For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertainty of fault states.To overcome these problems,this paper proposes a reliability analysismethod based on T-S fault tree analysis(T-S FTA)and Hyper-ellipsoidal Bayesian network(HE-BN).The method describes the connection between the various systemfault events by T-S fuzzy gates and translates them into a Bayesian network(BN)model.Combining the advantages of T-S fault tree modeling with the advantages of Bayesian network computation,a reliability modeling method is proposed that can fully reflect the fault characteristics of complex systems.Experts describe the degree of failure of the event in the form of interval numbers.The knowledge and experience of experts are fused with the D-S evidence theory to obtain the initial failure probability interval of the BN root node.Then,the Hyper-ellipsoidal model(HM)constrains the initial failure probability interval and constructs a HE-BN for the system.A reliability analysismethod is proposed to solve the problem of insufficient failure data and uncertainty in the degree of failure.The failure probability of the system is further calculated and the key components that affect the system’s reliability are identified.The proposedmethod accounts for the uncertainty and incompleteness of the failure data in complex multi-state systems and establishes an easily computable reliability model that fully reflects the characteristics of complex faults and accurately identifies system weaknesses.The feasibility and accuracy of the method are further verified by conducting case studies.
文摘Wear topography is a significant indicator of tribological behavior for the inspection of machine health conditions.An intelligent in-suit wear assessment method for random topography is here proposed.Three-dimension(3D)topography is employed to address the uncertainties in wear evaluation.Initially,3D topography reconstruction from a worn surface is accomplished with photometric stereo vision(PSV).Then,the wear features are identified by a contrastive learning-based extraction network(WSFE-Net)including the relative and temporal prior knowledge of wear mechanisms.Furthermore,the typical wear degrees including mild,moderate,and severe are evaluated by a wear severity assessment network(WSA-Net)for the probability and its associated uncertainty based on subjective logic.By integrating the evidence information from 2D and 3D-damage surfaces with Dempster–Shafer(D–S)evidence,the uncertainty of severity assessment results is further reduced.The proposed model could constrain the uncertainty below 0.066 in the wear degree evaluation of a continuous wear experiment,which reflects the high credibility of the evaluation result.
基金supported by the National Natural Science Foundation of China(61174022)the National High Technology Research and Development Program of China(863 Program)(2013AA013801)+2 种基金the Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems,Beihang University(BUAA-VR-14KF-02)the General Research Program of the Science Supported by Sichuan Provincial Department of Education(14ZB0322)the Fundamental Research Funds for the Central Universities(XDJK2014D008)
文摘Identifying influential nodes in complex networks is still an open issue. In this paper, a new comprehensive centrality mea- sure is proposed based on the Dempster-Shafer evidence theory. The existing measures of degree centrality, betweenness centra- lity and closeness centrality are taken into consideration in the proposed method. Numerical examples are used to illustrate the effectiveness of the proposed method.
基金Sponsored by the Nation Nature Science Foundation of China(Grant No.61301095,61201237)the Nature Science Foundation of Heilongjiang Province of China(Grant No.QC2012C069)the Fundamental Research Funds for the Central Universities(Grant No.HEUCFZ1129,HEUCF130810,HEUCF130817)
文摘In this paper,convex optimization theory is introduced into the recognition of communication signals. The detailed content contains three parts. The first part gives a survey of basic concepts,main technology and recognition model of convex optimization theory. Special emphasis is placed on how to set up the new recognition model of communication signals with multisensor reports. The second part gives the solution method of the recognition model,which is called Logarithmic Penalty Barrier Function. The last part gives several numeric simulations,in contrast to D-S evidence inference method,this new method can also generate reasonable recognition results. Moreover,this new method can deal with the form of sensor reports which is more general than that allowed by the D-S evidence inference method,and it has much lower computation complexity than that of D-S evidence inference method. In addition,this new method has better recognition result,stronger anti-interference and robustness. Therefore,the convex optimization methods can be widely used in the recognition of communication signals.