Transmembrane proteins are some special and important proteins in cells. Because of their importance and specificity, the prediction of the transmembrane regions has very important theoretical and practical significan...Transmembrane proteins are some special and important proteins in cells. Because of their importance and specificity, the prediction of the transmembrane regions has very important theoretical and practical significance. At present, the prediction methods are mainly based on the physicochemical property and statistic analysis of amino acids. However, these methods are suitable for some environments but inapplicable for other environments. In this paper, the multi-sources information fusion theory has been introduced to predict the transmembrane regions. The proposed method is test on a data set of transmembrane proteins. The results show that the proposed method has the ability of predicting the transmembrane regions as a good performance and powerful tool.展开更多
An improvement method for the combining rule of Dempster evidence theory is proposed. Different from Dempster theory, the reliability of evidences isn't identical; and varies with the event. By weight evidence acc...An improvement method for the combining rule of Dempster evidence theory is proposed. Different from Dempster theory, the reliability of evidences isn't identical; and varies with the event. By weight evidence according to their reliability, the effect of unreliable evidence is reduced, and then get the fusion result that is closer to the truth. An example to expand the advantage of this method is given. The example proves that this method is helpful to find a correct result.展开更多
Cognitive Reliability and Error Analysis Method(CREAM)is widely used in human reliability analysis(HRA).It defines nine common performance conditions(CPCs),which represent the factors thatmay affect human reliability ...Cognitive Reliability and Error Analysis Method(CREAM)is widely used in human reliability analysis(HRA).It defines nine common performance conditions(CPCs),which represent the factors thatmay affect human reliability and are used to modify the cognitive failure probability(CFP).However,the levels of CPCs are usually determined by domain experts,whichmay be subjective and uncertain.What’smore,the classicCREAMassumes that the CPCs are independent,which is unrealistic.Ignoring the dependence among CPCs will result in repeated calculations of the influence of the CPCs on CFP and lead to unreasonable reliability evaluation.To address the issue of uncertain information modeling and processing,this paper introduces evidence theory to evaluate the CPC levels in specific scenarios.To address the issue of dependence modeling,the Decision-Making Trial and Evaluation Laboratory(DEMATEL)method is used to process the dependence among CPCs and calculate the relative weights of each CPC,thus modifying the multiplier of the CPCs.The detailed process of the proposed method is illustrated in this paper and the CFP estimated by the proposed method is more reasonable.展开更多
In order to effectively deal with the conflict temporal evidences without affecting the sequential and dynamic characteristics in the multi-sensor target recognition(MSTR) system at the decision making level, this pap...In order to effectively deal with the conflict temporal evidences without affecting the sequential and dynamic characteristics in the multi-sensor target recognition(MSTR) system at the decision making level, this paper proposes a Dempster-Shafer(DS) theory and intuitionistic fuzzy set(IFS) based temporal evidence combination method(DSIFS-TECM). To realize the method,the relationship between DS theory and IFS is firstly analyzed. And then the intuitionistic fuzzy possibility degree of intuitionistic fuzzy value(IFPD-IFV) is defined, and a novel ranking method with isotonicity for IFV is proposed. Finally, a calculation method for relative reliability factor(RRF) is designed based on the proposed ranking method. As a proof of the method, numerical analysis and experimental simulation are performed. The results indicate DSIFS-TECM is capable of dealing with the conflict temporal evidences and sensitive to the changing of time. Furthermore, compared with the existing methods, DSIFS-TECM has stronger ability of anti-interference.展开更多
In order to achieve the information fusion in the time domain based on the evidence theory, an evidence combination method in the time domain based on reliability and importance is proposed according to the idea of ev...In order to achieve the information fusion in the time domain based on the evidence theory, an evidence combination method in the time domain based on reliability and importance is proposed according to the idea of evidence discount. Firstly, the distortion of the time-domain evidence is judged based on single exponential smoothing. The real-time reliability of the evidence at the adjacent time is obtained by the real-time reliability assessment method of the evidence based on the credibility decay model.Then, the relative importance of the evidence at the adjacent time is obtained by comprehensively considering improved conflict degree and uncertainty. Finally, based on the criterion of evidence discount and the Dempster’s rule of combination, the evidence combination is carried out to achieve the sequential combination of time-domain evidence. The numerical simulation and analysis show that this method has fully embodied the dynamic characteristics of time-domain evidence combination, and it has strong processing ability for conflict information and anti-disturbing ability.The proposed method has good applicability to information fusion in the time domain.展开更多
Features of oil spills and look-alikes in polarimetric synthetic aperture radar(SAR)images always play an important role in oil spill detection.Many oil spill detection algorithms have been implemented based on these ...Features of oil spills and look-alikes in polarimetric synthetic aperture radar(SAR)images always play an important role in oil spill detection.Many oil spill detection algorithms have been implemented based on these features.Although environmental factors such as wind speed are important to distinguish oil spills and look-alikes,some oil spill detection algorithms do not consider the environmental factors.To distinguish oil spills and look-alikes more accurately based on environmental factors and image features,a new oil spill detection algorithm based on Dempster-Shafer evidence theory was proposed.The process of oil spill detection taking account of environmental factors was modeled using the subjective Bayesian model.The Faster-region convolutional neural networks(RCNN)model was used for oil spill detection based on the convolution features.The detection results of the two models were fused at decision level using Dempster-Shafer evidence theory.The establishment and test of the proposed algorithm were completed based on our oil spill and look-alike sample database that contains 1798 image samples and environmental information records related to the image samples.The analysis and evaluation of the proposed algorithm shows a good ability to detect oil spills at a higher detection rate,with an identifi cation rate greater than 75%and a false alarm rate lower than 19%from experiments.A total of 12 oil spill SAR images were collected for the validation and evaluation of the proposed algorithm.The evaluation result shows that the proposed algorithm has a good performance on detecting oil spills with an overall detection rate greater than 70%.展开更多
Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of se...Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of sensor data,current practices in network forensic analysis are to manually examine,an error prone,labor-intensive and time consuming process.To solve these problems,in this paper we propose a digital evidence fusion method for network forensics with Dempster-Shafer theory that can detect efficiently computer crime in networked environments,and fuse digital evidence from different sources such as hosts and sub-networks automatically.In the end,we evaluate the method on well-known KDD Cup1999 dataset.The results prove our method is very effective for real-time network forensics,and can provide comprehensible messages for a forensic investigators.展开更多
This paper deals with knowledge representation of ESEP (Expert System for Earthqauke Prediction). Attending the characteristics of the knowledge in earthquake prediction domain, production representation and procedura...This paper deals with knowledge representation of ESEP (Expert System for Earthqauke Prediction). Attending the characteristics of the knowledge in earthquake prediction domain, production representation and procedural representation are connected in the knowledge repesentation model of ESEP named ESEP/K, and three new ways of evidence conbination are proposed for production rules besides 'AND' and 'OR'.展开更多
Dempster-Shafer(D-S)evidence theory is a key technology for integrating uncertain information from multiple sources.However,the combination rules can be paradoxical when the evidence seriously conflict with each other...Dempster-Shafer(D-S)evidence theory is a key technology for integrating uncertain information from multiple sources.However,the combination rules can be paradoxical when the evidence seriously conflict with each other.In the paper,we propose a novel combination algorithm based on unsupervised Density-Based Spatial Clustering of Applications with Noise(DBSCAN)density clustering.In the proposed mechanism,firstly,the original evidence sets are preprocessed by DBSCAN density clustering,and a successfully focal element similarity criteria is used to mine the potential information between the evidence,and make a correct measure of the conflict evidence.Then,two different discount factors are adopted to revise the original evidence sets,based on the result of DBSCAN density clustering.Finally,we conduct the information fusion for the revised evidence sets by D-S combination rules.Simulation results show that the proposed method can effectively solve the synthesis problem of high-conflict evidence,with better accuracy,stability and convergence speed.展开更多
Evidence theory is widely used in the field of target recognition. The invalidation problem of this theory when dealing with highly conflict evidences is a research hotspot. Several alternatives of the combination rul...Evidence theory is widely used in the field of target recognition. The invalidation problem of this theory when dealing with highly conflict evidences is a research hotspot. Several alternatives of the combination rule are analyzed and compared. A new combination approach is proposed. Calculate the reliabilities of evidence sources using existing evidences. Construct reliabilities judge matrixes and get the weights of each evidence source. Weight average all inputted evidences. Combine processed evidences with D-S combination rule repeatedly to identify a target. The application in multi-sensor target reeognition as well as the comparison with typical alternatives all validated that this approach can dispose highly conflict evidences efficiently and get reasonable reeognition results rapidly.展开更多
As an efficient tool in handling uncertain issues, Dempster-Shafer evidence theory has been increasingly used in structural health monitoring and damage detection. In applications, however, Dempster-Shafer evidence th...As an efficient tool in handling uncertain issues, Dempster-Shafer evidence theory has been increasingly used in structural health monitoring and damage detection. In applications, however, Dempster-Shafer evidence theory sometimes leads to counter-intuitive results. In this study, a new fusion algorithm of evidence theory is put forward to address various counter-intuitive problems and manage the reliability difference of the evidence. The proposed algorithm comprises the following aspects:(1) Dempster's combination rule is generalized by introducing the concept of evidence ullage. The new rule allows classical Dempster's rule and can resolve counter-intuitive problems cause by evidence conflict and evidence compatibility;(2) a reliability assessing method based on a priori and posterior knowledge is proposed. Compared with conventional reliability assessment, the proposed method can reflect the actual evidence reliabilities and can efficiently reduce decision risk. Numerical examples confirm the validity and utility of the proposed algorithm. In addition, an experimental investigation on a spatial truss structure is carried out to illustrate the identified ability of the proposed approach. The results indicate that the fusion algorithm has no strict request on the accuracy and consistency of evidence sources and can efficiently enhance diagnostic accuracy.展开更多
Based on the framework of evidence theory, data fusion aims at obtaining a single Basic Probability Assignment (BPA) function by combining several belief functions from distinct information sources. Dempster’s rule o...Based on the framework of evidence theory, data fusion aims at obtaining a single Basic Probability Assignment (BPA) function by combining several belief functions from distinct information sources. Dempster’s rule of combination is the most popular rule of combinations, but it is a poor solution for the management of the conflict between various information sources at the normalization step. Even when it faces high conflict information, the classical Dempster-Shafer’s (D-S) evidence theory can involve counter-intuitive results. This paper presents a modified averaging method to combine conflicting evidence based on the distance of evidences; and also gives the weighted average of the evidence in the system. Numerical examples showed that the proposed method can realize the modification ideas and also will provide reasonable results with good convergence efficiency.展开更多
Evidence theory has been widely used in the information fusion for its effectiveness of the uncertainty reasoning. However, the classical DS evidence theory involves counter-intuitive behaviors when the high conflict ...Evidence theory has been widely used in the information fusion for its effectiveness of the uncertainty reasoning. However, the classical DS evidence theory involves counter-intuitive behaviors when the high conflict information exists. Based on the analysis of some modified methods, Assigning the weighting factors according to the intrinsic characteristics of the existing evidence sources is proposed, which is determined on the evidence distance theory. From the numerical examples, the proposed method provides a reasonable result with good convergence efficiency. In addition, the new rule retrieves to the Yager's formula when all the evidence sources contradict to each other completely.展开更多
A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL),which is called Center-based Nearest N...A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL),which is called Center-based Nearest Neighbor (CNN). CNN retains the advantages of NFL while it has relatively low computational cost. Different member classifiers are trained based on different feature spaces respectively. Corresponding mass functions can be generated based on proposed mass function determination approach. The classification decision can be made based on the combined evidence and better classification performance can be expected. Experimental results on face recognition provided verify that the new approach is rational and effective.展开更多
How to efficiently measure the distance between two basic probability assignments(BPAs) is an open issue. In this paper, a new method to measure the distance between two BPAs is proposed, based on two existing measu...How to efficiently measure the distance between two basic probability assignments(BPAs) is an open issue. In this paper, a new method to measure the distance between two BPAs is proposed, based on two existing measures of evidence distance. The new proposed method is comprehensive and generalized. Numerical examples are used to illustrate the effectiveness of the proposed method.展开更多
In this paper,a two-way relay system which achieves bi-directional communication via a multiple-antenna relay in two time slots is studied.In the multiple access(MA) phase,the novel receive schemes based on Dempster-S...In this paper,a two-way relay system which achieves bi-directional communication via a multiple-antenna relay in two time slots is studied.In the multiple access(MA) phase,the novel receive schemes based on Dempster-Shafer(D-S) evidence theory are proposed at the relay node.Instead of traditional linear detection,the first proposed MIMO-DS NC scheme adopts D-S evidence theory to detect the signals of each source node before mapping them into network-coded signal.Moreover,different from traditional physical-layer network coding(PNC) based on virtual MIMO model,the further proposed MIMO-DS PNC comes from the vector space perspective and combines PNC mapping with D-S theory to obtain network-coded signal without estimating each source node signal.D-S theory can appropriately characterize uncertainty and make full use of multiple evidence source information by Dempster's combination rule to obtain reliable decisions.In the broadcast(BC) phase,the space-time coding(STC) and antenna selection(AS) schemes are adopted to achieve transmit diversity.Simulation results reveal that the STC and AS schemes both achieve full transmit diversity in the BC phase and the proposed MIMO-DS NC/PNC schemes obtain better end-to-end BER performance and throughputs compared with traditional schemes with a little complexity increasing and no matter which scheme is adopted in the BC phase,MIMO-DS PNC always achieves full end-to-end diversity gain as MIMO-ML NC but with a lower complexity and its throughput approaches the throughput of MIMO-ML NC in high SNR regime.展开更多
Aiming at the invalidation of DS theory dealing with the evidence in a high conflict and reducing confidence level of DSm theory processing a low conflict,this paper proposes an interactive-adaptive combination rule. ...Aiming at the invalidation of DS theory dealing with the evidence in a high conflict and reducing confidence level of DSm theory processing a low conflict,this paper proposes an interactive-adaptive combination rule. Adopting the angle similarity based on hyper-power set as the weight of generalized Dempster rule and PCR rule,the new rule adaptively processes various evidence combination issues. In this way,the rule can obtain not only the better fusion of decision making effect in a low conflict,but also the solution to the synthesis in a high conflict. Simulation analysis demonstrates the validity and applicability from this rule of combination.展开更多
A new conflicting evidence fusion method is proposed for the deficiency of Dempster's rule which can not fuse the conflicting evidence. Evidence is divided into three categories:believable evidence, non-conflictin...A new conflicting evidence fusion method is proposed for the deficiency of Dempster's rule which can not fuse the conflicting evidence. Evidence is divided into three categories:believable evidence, non-conflicting evidence and conflicting evidence. The influences of these three categories of evidences on fusion results when discounted are analyzed respectively. On these bases, the evidence distance and the conjunctive conflict are utilized in sequence to recognize the believable evidence and non-conflicting evidence. The discounting factors of these two categories of evidences are set to one, which keeps the evidences support the true hypothesis to the greatest degree, and makes the fusion results focus onto the true hypothesis. Examples of some missile fault diagnosis show that the new method can effectively fuse the conflicting evidences, and is suited to fuse the relievable evidences. The new method improves the reliability and rationality of fusion results compared with traditional methods.展开更多
基金Supported by the National Natural Science Foundation of China (No. 60874105, 61174022)the Program for New Century Excellent Talents in University (No. NCET-08-0345)the Chongqing Natural Science Foundation (No. CSCT, 2010BA2003)
文摘Transmembrane proteins are some special and important proteins in cells. Because of their importance and specificity, the prediction of the transmembrane regions has very important theoretical and practical significance. At present, the prediction methods are mainly based on the physicochemical property and statistic analysis of amino acids. However, these methods are suitable for some environments but inapplicable for other environments. In this paper, the multi-sources information fusion theory has been introduced to predict the transmembrane regions. The proposed method is test on a data set of transmembrane proteins. The results show that the proposed method has the ability of predicting the transmembrane regions as a good performance and powerful tool.
文摘An improvement method for the combining rule of Dempster evidence theory is proposed. Different from Dempster theory, the reliability of evidences isn't identical; and varies with the event. By weight evidence according to their reliability, the effect of unreliable evidence is reduced, and then get the fusion result that is closer to the truth. An example to expand the advantage of this method is given. The example proves that this method is helpful to find a correct result.
基金Shanghai Rising-Star Program(Grant No.21QA1403400)Shanghai Sailing Program(Grant No.20YF1414800)Shanghai Key Laboratory of Power Station Automation Technology(Grant No.13DZ2273800).
文摘Cognitive Reliability and Error Analysis Method(CREAM)is widely used in human reliability analysis(HRA).It defines nine common performance conditions(CPCs),which represent the factors thatmay affect human reliability and are used to modify the cognitive failure probability(CFP).However,the levels of CPCs are usually determined by domain experts,whichmay be subjective and uncertain.What’smore,the classicCREAMassumes that the CPCs are independent,which is unrealistic.Ignoring the dependence among CPCs will result in repeated calculations of the influence of the CPCs on CFP and lead to unreasonable reliability evaluation.To address the issue of uncertain information modeling and processing,this paper introduces evidence theory to evaluate the CPC levels in specific scenarios.To address the issue of dependence modeling,the Decision-Making Trial and Evaluation Laboratory(DEMATEL)method is used to process the dependence among CPCs and calculate the relative weights of each CPC,thus modifying the multiplier of the CPCs.The detailed process of the proposed method is illustrated in this paper and the CFP estimated by the proposed method is more reasonable.
基金supported by the National Natural Science Foundation of China(61272011)
文摘In order to effectively deal with the conflict temporal evidences without affecting the sequential and dynamic characteristics in the multi-sensor target recognition(MSTR) system at the decision making level, this paper proposes a Dempster-Shafer(DS) theory and intuitionistic fuzzy set(IFS) based temporal evidence combination method(DSIFS-TECM). To realize the method,the relationship between DS theory and IFS is firstly analyzed. And then the intuitionistic fuzzy possibility degree of intuitionistic fuzzy value(IFPD-IFV) is defined, and a novel ranking method with isotonicity for IFV is proposed. Finally, a calculation method for relative reliability factor(RRF) is designed based on the proposed ranking method. As a proof of the method, numerical analysis and experimental simulation are performed. The results indicate DSIFS-TECM is capable of dealing with the conflict temporal evidences and sensitive to the changing of time. Furthermore, compared with the existing methods, DSIFS-TECM has stronger ability of anti-interference.
基金supported by the National Natural Science Foundation of China(71571190 71601183+1 种基金 L1534031)the Shanxi Province Natural Science Foundation of China(2014JQ2-7045)
文摘In order to achieve the information fusion in the time domain based on the evidence theory, an evidence combination method in the time domain based on reliability and importance is proposed according to the idea of evidence discount. Firstly, the distortion of the time-domain evidence is judged based on single exponential smoothing. The real-time reliability of the evidence at the adjacent time is obtained by the real-time reliability assessment method of the evidence based on the credibility decay model.Then, the relative importance of the evidence at the adjacent time is obtained by comprehensively considering improved conflict degree and uncertainty. Finally, based on the criterion of evidence discount and the Dempster’s rule of combination, the evidence combination is carried out to achieve the sequential combination of time-domain evidence. The numerical simulation and analysis show that this method has fully embodied the dynamic characteristics of time-domain evidence combination, and it has strong processing ability for conflict information and anti-disturbing ability.The proposed method has good applicability to information fusion in the time domain.
基金Supported by the National Key R&D Program of China(No.2017YFC1405600)the National Natural Science Foundation of China(Nos.42076197,41576032)the Major Program for the International Cooperation of the Chinese Academy of Sciences(No.133337KYSB20160002)。
文摘Features of oil spills and look-alikes in polarimetric synthetic aperture radar(SAR)images always play an important role in oil spill detection.Many oil spill detection algorithms have been implemented based on these features.Although environmental factors such as wind speed are important to distinguish oil spills and look-alikes,some oil spill detection algorithms do not consider the environmental factors.To distinguish oil spills and look-alikes more accurately based on environmental factors and image features,a new oil spill detection algorithm based on Dempster-Shafer evidence theory was proposed.The process of oil spill detection taking account of environmental factors was modeled using the subjective Bayesian model.The Faster-region convolutional neural networks(RCNN)model was used for oil spill detection based on the convolution features.The detection results of the two models were fused at decision level using Dempster-Shafer evidence theory.The establishment and test of the proposed algorithm were completed based on our oil spill and look-alike sample database that contains 1798 image samples and environmental information records related to the image samples.The analysis and evaluation of the proposed algorithm shows a good ability to detect oil spills at a higher detection rate,with an identifi cation rate greater than 75%and a false alarm rate lower than 19%from experiments.A total of 12 oil spill SAR images were collected for the validation and evaluation of the proposed algorithm.The evaluation result shows that the proposed algorithm has a good performance on detecting oil spills with an overall detection rate greater than 70%.
基金supported by the National Natural Science Foundation of China under Grant No.60903166 the National High Technology Research and Development Program of China(863 Program) under Grants No.2012AA012506,No.2012AA012901,No.2012AA012903+9 种基金 Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20121103120032 the Humanity and Social Science Youth Foundation of Ministry of Education of China under Grant No.13YJCZH065 the Opening Project of Key Lab of Information Network Security of Ministry of Public Security(The Third Research Institute of Ministry of Public Security) under Grant No.C13613 the China Postdoctoral Science Foundation General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China under Grant No.km201410005012 the Research on Education and Teaching of Beijing University of Technology under Grant No.ER2013C24 the Beijing Municipal Natural Science Foundation Sponsored by Hunan Postdoctoral Scientific Program Open Research Fund of Beijing Key Laboratory of Trusted Computing Funds for the Central Universities, Contract No.2012JBM030
文摘Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of sensor data,current practices in network forensic analysis are to manually examine,an error prone,labor-intensive and time consuming process.To solve these problems,in this paper we propose a digital evidence fusion method for network forensics with Dempster-Shafer theory that can detect efficiently computer crime in networked environments,and fuse digital evidence from different sources such as hosts and sub-networks automatically.In the end,we evaluate the method on well-known KDD Cup1999 dataset.The results prove our method is very effective for real-time network forensics,and can provide comprehensible messages for a forensic investigators.
文摘This paper deals with knowledge representation of ESEP (Expert System for Earthqauke Prediction). Attending the characteristics of the knowledge in earthquake prediction domain, production representation and procedural representation are connected in the knowledge repesentation model of ESEP named ESEP/K, and three new ways of evidence conbination are proposed for production rules besides 'AND' and 'OR'.
文摘Dempster-Shafer(D-S)evidence theory is a key technology for integrating uncertain information from multiple sources.However,the combination rules can be paradoxical when the evidence seriously conflict with each other.In the paper,we propose a novel combination algorithm based on unsupervised Density-Based Spatial Clustering of Applications with Noise(DBSCAN)density clustering.In the proposed mechanism,firstly,the original evidence sets are preprocessed by DBSCAN density clustering,and a successfully focal element similarity criteria is used to mine the potential information between the evidence,and make a correct measure of the conflict evidence.Then,two different discount factors are adopted to revise the original evidence sets,based on the result of DBSCAN density clustering.Finally,we conduct the information fusion for the revised evidence sets by D-S combination rules.Simulation results show that the proposed method can effectively solve the synthesis problem of high-conflict evidence,with better accuracy,stability and convergence speed.
基金This project was supported by the National "863" High Technology Research and Development Program of China(2001AA602021)
文摘Evidence theory is widely used in the field of target recognition. The invalidation problem of this theory when dealing with highly conflict evidences is a research hotspot. Several alternatives of the combination rule are analyzed and compared. A new combination approach is proposed. Calculate the reliabilities of evidence sources using existing evidences. Construct reliabilities judge matrixes and get the weights of each evidence source. Weight average all inputted evidences. Combine processed evidences with D-S combination rule repeatedly to identify a target. The application in multi-sensor target reeognition as well as the comparison with typical alternatives all validated that this approach can dispose highly conflict evidences efficiently and get reasonable reeognition results rapidly.
基金National Natural Science Foundation of China under Grant No.51708446
文摘As an efficient tool in handling uncertain issues, Dempster-Shafer evidence theory has been increasingly used in structural health monitoring and damage detection. In applications, however, Dempster-Shafer evidence theory sometimes leads to counter-intuitive results. In this study, a new fusion algorithm of evidence theory is put forward to address various counter-intuitive problems and manage the reliability difference of the evidence. The proposed algorithm comprises the following aspects:(1) Dempster's combination rule is generalized by introducing the concept of evidence ullage. The new rule allows classical Dempster's rule and can resolve counter-intuitive problems cause by evidence conflict and evidence compatibility;(2) a reliability assessing method based on a priori and posterior knowledge is proposed. Compared with conventional reliability assessment, the proposed method can reflect the actual evidence reliabilities and can efficiently reduce decision risk. Numerical examples confirm the validity and utility of the proposed algorithm. In addition, an experimental investigation on a spatial truss structure is carried out to illustrate the identified ability of the proposed approach. The results indicate that the fusion algorithm has no strict request on the accuracy and consistency of evidence sources and can efficiently enhance diagnostic accuracy.
基金Project (No. 51476040103JW13) supported by the National DefenseKey Laboratory of Target and Environment Feature of China
文摘Based on the framework of evidence theory, data fusion aims at obtaining a single Basic Probability Assignment (BPA) function by combining several belief functions from distinct information sources. Dempster’s rule of combination is the most popular rule of combinations, but it is a poor solution for the management of the conflict between various information sources at the normalization step. Even when it faces high conflict information, the classical Dempster-Shafer’s (D-S) evidence theory can involve counter-intuitive results. This paper presents a modified averaging method to combine conflicting evidence based on the distance of evidences; and also gives the weighted average of the evidence in the system. Numerical examples showed that the proposed method can realize the modification ideas and also will provide reasonable results with good convergence efficiency.
文摘Evidence theory has been widely used in the information fusion for its effectiveness of the uncertainty reasoning. However, the classical DS evidence theory involves counter-intuitive behaviors when the high conflict information exists. Based on the analysis of some modified methods, Assigning the weighting factors according to the intrinsic characteristics of the existing evidence sources is proposed, which is determined on the evidence distance theory. From the numerical examples, the proposed method provides a reasonable result with good convergence efficiency. In addition, the new rule retrieves to the Yager's formula when all the evidence sources contradict to each other completely.
基金Supported by Grant for State Key Program for Basic Research of China (973) (No. 2007CB311006)
文摘A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL),which is called Center-based Nearest Neighbor (CNN). CNN retains the advantages of NFL while it has relatively low computational cost. Different member classifiers are trained based on different feature spaces respectively. Corresponding mass functions can be generated based on proposed mass function determination approach. The classification decision can be made based on the combined evidence and better classification performance can be expected. Experimental results on face recognition provided verify that the new approach is rational and effective.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2013AA013801)the National Natural Science Foundation of China(61174022+4 种基金61573290)the open funding project of State Key Laboratory of Virtual Reality Technology and Systemsthe Beihang University(BUAA-VR-14KF-02)the General Research Program of Natural Science of Sichuan Provincial Department of Education(14ZB0322)the Self-financing Program of State Ethnic Affairs Commission of China(14SCZ014)
文摘How to efficiently measure the distance between two basic probability assignments(BPAs) is an open issue. In this paper, a new method to measure the distance between two BPAs is proposed, based on two existing measures of evidence distance. The new proposed method is comprehensive and generalized. Numerical examples are used to illustrate the effectiveness of the proposed method.
基金jointly supported by the National Natural Science Foundation of China under Grant 61201198 and 61372089the Beijing Natural Science Foundation under Grant 4132015,4132007and 4132019
文摘In this paper,a two-way relay system which achieves bi-directional communication via a multiple-antenna relay in two time slots is studied.In the multiple access(MA) phase,the novel receive schemes based on Dempster-Shafer(D-S) evidence theory are proposed at the relay node.Instead of traditional linear detection,the first proposed MIMO-DS NC scheme adopts D-S evidence theory to detect the signals of each source node before mapping them into network-coded signal.Moreover,different from traditional physical-layer network coding(PNC) based on virtual MIMO model,the further proposed MIMO-DS PNC comes from the vector space perspective and combines PNC mapping with D-S theory to obtain network-coded signal without estimating each source node signal.D-S theory can appropriately characterize uncertainty and make full use of multiple evidence source information by Dempster's combination rule to obtain reliable decisions.In the broadcast(BC) phase,the space-time coding(STC) and antenna selection(AS) schemes are adopted to achieve transmit diversity.Simulation results reveal that the STC and AS schemes both achieve full transmit diversity in the BC phase and the proposed MIMO-DS NC/PNC schemes obtain better end-to-end BER performance and throughputs compared with traditional schemes with a little complexity increasing and no matter which scheme is adopted in the BC phase,MIMO-DS PNC always achieves full end-to-end diversity gain as MIMO-ML NC but with a lower complexity and its throughput approaches the throughput of MIMO-ML NC in high SNR regime.
基金supported by Pre-Research Foundation of PLA(LY200838014)supported by the PLA Research Program of Science and Technology (KJ08062)
文摘Aiming at the invalidation of DS theory dealing with the evidence in a high conflict and reducing confidence level of DSm theory processing a low conflict,this paper proposes an interactive-adaptive combination rule. Adopting the angle similarity based on hyper-power set as the weight of generalized Dempster rule and PCR rule,the new rule adaptively processes various evidence combination issues. In this way,the rule can obtain not only the better fusion of decision making effect in a low conflict,but also the solution to the synthesis in a high conflict. Simulation analysis demonstrates the validity and applicability from this rule of combination.
文摘A new conflicting evidence fusion method is proposed for the deficiency of Dempster's rule which can not fuse the conflicting evidence. Evidence is divided into three categories:believable evidence, non-conflicting evidence and conflicting evidence. The influences of these three categories of evidences on fusion results when discounted are analyzed respectively. On these bases, the evidence distance and the conjunctive conflict are utilized in sequence to recognize the believable evidence and non-conflicting evidence. The discounting factors of these two categories of evidences are set to one, which keeps the evidences support the true hypothesis to the greatest degree, and makes the fusion results focus onto the true hypothesis. Examples of some missile fault diagnosis show that the new method can effectively fuse the conflicting evidences, and is suited to fuse the relievable evidences. The new method improves the reliability and rationality of fusion results compared with traditional methods.