With the full implementation of the Code of Criminal Procedure, the application of the rules of the exclusion of the illegal evidences is more inclined to the protection of the human rights. However, in the process of...With the full implementation of the Code of Criminal Procedure, the application of the rules of the exclusion of the illegal evidences is more inclined to the protection of the human rights. However, in the process of the implementation of the new laws, the problems in view of the rules of the exclusion of the illegal evidences are also prominent, which are mainly reflected in the ambiguity of the scope of the application, the start of the program of the exclusion, and the formalization the trial certificates and other aspects. Therefore, in this article, the author starts from the concept of the illegal evidences, and expounds the principles of the exclusion and the abilities of the evidences, and especially explores the abilities of the evidences and the probative forces. From the differences between the two, the author strictly proves the virtualization of the standards, in order to provide the positive solutions for strengthening the exclusionary procedure of the illegal evidences.展开更多
Based on the framework of evidence theory, data fusion aims at obtaining a single Basic Probability Assignment (BPA) function by combining several belief functions from distinct information sources. Dempster’s rule o...Based on the framework of evidence theory, data fusion aims at obtaining a single Basic Probability Assignment (BPA) function by combining several belief functions from distinct information sources. Dempster’s rule of combination is the most popular rule of combinations, but it is a poor solution for the management of the conflict between various information sources at the normalization step. Even when it faces high conflict information, the classical Dempster-Shafer’s (D-S) evidence theory can involve counter-intuitive results. This paper presents a modified averaging method to combine conflicting evidence based on the distance of evidences; and also gives the weighted average of the evidence in the system. Numerical examples showed that the proposed method can realize the modification ideas and also will provide reasonable results with good convergence efficiency.展开更多
Evidence theory has been widely used in the information fusion for its effectiveness of the uncertainty reasoning. However, the classical DS evidence theory involves counter-intuitive behaviors when the high conflict ...Evidence theory has been widely used in the information fusion for its effectiveness of the uncertainty reasoning. However, the classical DS evidence theory involves counter-intuitive behaviors when the high conflict information exists. Based on the analysis of some modified methods, Assigning the weighting factors according to the intrinsic characteristics of the existing evidence sources is proposed, which is determined on the evidence distance theory. From the numerical examples, the proposed method provides a reasonable result with good convergence efficiency. In addition, the new rule retrieves to the Yager's formula when all the evidence sources contradict to each other completely.展开更多
Although evidence theory has been widely used in information fusion due to its effectiveness of uncertainty reasoning, the classical DS evidence theory involves counter-intuitive behaviors when high conflict informati...Although evidence theory has been widely used in information fusion due to its effectiveness of uncertainty reasoning, the classical DS evidence theory involves counter-intuitive behaviors when high conflict information exists. Many modification methods have been developed which can be classified into the following two kinds of ideas, either modifying the combination rules or modifying the evidence sources. In order to make the modification more reasonable and more effective, this paper gives a thorough analysis of some typical existing modification methods firstly, and then extracts the intrinsic feature of the evidence sources by using evidence distance theory. Based on the extracted features, two modified plans of evidence theory according to the corresponding modification ideas have been proposed. The results of numerical examples prove the good performance of the plans when combining evidence sources with high conflict information.展开更多
Dempster-Shafer(D-S)evidence theory is a key technology for integrating uncertain information from multiple sources.However,the combination rules can be paradoxical when the evidence seriously conflict with each other...Dempster-Shafer(D-S)evidence theory is a key technology for integrating uncertain information from multiple sources.However,the combination rules can be paradoxical when the evidence seriously conflict with each other.In the paper,we propose a novel combination algorithm based on unsupervised Density-Based Spatial Clustering of Applications with Noise(DBSCAN)density clustering.In the proposed mechanism,firstly,the original evidence sets are preprocessed by DBSCAN density clustering,and a successfully focal element similarity criteria is used to mine the potential information between the evidence,and make a correct measure of the conflict evidence.Then,two different discount factors are adopted to revise the original evidence sets,based on the result of DBSCAN density clustering.Finally,we conduct the information fusion for the revised evidence sets by D-S combination rules.Simulation results show that the proposed method can effectively solve the synthesis problem of high-conflict evidence,with better accuracy,stability and convergence speed.展开更多
Since the implementation of the rules of the supplement and correction of the defective evidences, there are many problems in the practice. The actual investigations and researches also feedback that the judges also h...Since the implementation of the rules of the supplement and correction of the defective evidences, there are many problems in the practice. The actual investigations and researches also feedback that the judges also have a lot of problems in the face of the definition of the meaning of the defective evidences, the correction application, and the degree restrictions. Behind this reflects the contradiction between the stress of the prosecution organs in the criminal detection and the deepening of the resisting mechanism in the court. And the litigation structure of the "division of responsibilities among three authorities" and the trial mode of "the centralism of the book records of the cases" exacerbated this opposition. On the basis of clarifying the origin and the meanings of the defective evidences, the author of this paper analyzes the essence and its harm of the rule. Through the reflections of the problems existing in the practice, the author further defines the two types of the "defects" that shall not be allowed to correct.展开更多
Evidence theory is widely used in the field of target recognition. The invalidation problem of this theory when dealing with highly conflict evidences is a research hotspot. Several alternatives of the combination rul...Evidence theory is widely used in the field of target recognition. The invalidation problem of this theory when dealing with highly conflict evidences is a research hotspot. Several alternatives of the combination rule are analyzed and compared. A new combination approach is proposed. Calculate the reliabilities of evidence sources using existing evidences. Construct reliabilities judge matrixes and get the weights of each evidence source. Weight average all inputted evidences. Combine processed evidences with D-S combination rule repeatedly to identify a target. The application in multi-sensor target reeognition as well as the comparison with typical alternatives all validated that this approach can dispose highly conflict evidences efficiently and get reasonable reeognition results rapidly.展开更多
Expert knowledge is the key to modeling milling fault detection systems based on the belief rule base.The construction of an initial expert knowledge base seriously affects the accuracy and interpretability of the mil...Expert knowledge is the key to modeling milling fault detection systems based on the belief rule base.The construction of an initial expert knowledge base seriously affects the accuracy and interpretability of the milling fault detection model.However,due to the complexity of the milling system structure and the uncertainty of the milling failure index,it is often impossible to construct model expert knowledge effectively.Therefore,a milling system fault detection method based on fault tree analysis and hierarchical BRB(FTBRB)is proposed.Firstly,the proposed method uses a fault tree and hierarchical BRB modeling.Through fault tree analysis(FTA),the logical correspondence between FTA and BRB is sorted out.This can effectively embed the FTA mechanism into the BRB expert knowledge base.The hierarchical BRB model is used to solve the problem of excessive indexes and avoid combinatorial explosion.Secondly,evidence reasoning(ER)is used to ensure the transparency of the model reasoning process.Thirdly,the projection covariance matrix adaptation evolutionary strategies(P-CMA-ES)is used to optimize the model.Finally,this paper verifies the validity model and the method’s feasibility techniques for milling data sets.展开更多
Aiming at the invalidation of DS theory dealing with the evidence in a high conflict and reducing confidence level of DSm theory processing a low conflict,this paper proposes an interactive-adaptive combination rule. ...Aiming at the invalidation of DS theory dealing with the evidence in a high conflict and reducing confidence level of DSm theory processing a low conflict,this paper proposes an interactive-adaptive combination rule. Adopting the angle similarity based on hyper-power set as the weight of generalized Dempster rule and PCR rule,the new rule adaptively processes various evidence combination issues. In this way,the rule can obtain not only the better fusion of decision making effect in a low conflict,but also the solution to the synthesis in a high conflict. Simulation analysis demonstrates the validity and applicability from this rule of combination.展开更多
Prediction systems are an important aspect of intelligent decisions.In engineering practice,the complex system structure and the external environment cause many uncertain factors in the model,which influence the model...Prediction systems are an important aspect of intelligent decisions.In engineering practice,the complex system structure and the external environment cause many uncertain factors in the model,which influence the modeling accuracy of the model.The belief rule base(BRB)can implement nonlinear modeling and express a variety of uncertain information,including fuzziness,ignorance,randomness,etc.However,the BRB system also has two main problems:Firstly,modeling methods based on expert knowledge make it difficult to guarantee the model’s accuracy.Secondly,interpretability is not considered in the optimization process of current research,resulting in the destruction of the interpretability of BRB.To balance the accuracy and interpretability of the model,a self-growth belief rule basewith interpretability constraints(SBRB-I)is proposed.The reasoning process of the SBRB-I model is based on the evidence reasoning(ER)approach.Moreover,the self-growth learning strategy ensures effective cooperation between the datadriven model and the expert system.A case study showed that the accuracy and interpretability of the model could be guaranteed.The SBRB-I model has good application prospects in prediction systems.展开更多
To address the issue of rule premise combination explosion in the construction of the traditional complete conjunctive belief rule base(BRB),this paper introduces an orthogonal design method to reduce the conjunctive ...To address the issue of rule premise combination explosion in the construction of the traditional complete conjunctive belief rule base(BRB),this paper introduces an orthogonal design method to reduce the conjunctive BRB.The reasoning method based on reduced conjunctive BRB is designed with the help of the conversion technology from conjunctive BRB to disjunctive BRB.Finally,the operational mission effectiveness evaluation is taken as an example to verify the proposed method.The results show that the method proposed in this paper is feasible and effective.展开更多
The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can i...The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can initially provide a solution to low prediction accuracy. However, theinterpretability of the model and the traceability of the results still warrantfurther investigation. Therefore, a processor performance prediction methodbased on interpretable hierarchical belief rule base (HBRB-I) and globalsensitivity analysis (GSA) is proposed. The method can yield more reliableprediction results. Evidence reasoning (ER) is firstly used to evaluate thehistorical data of the processor, followed by a performance prediction modelwith interpretability constraints that is constructed based on HBRB-I. Then,the whale optimization algorithm (WOA) is used to optimize the parameters.Furthermore, to test the interpretability of the performance predictionprocess, GSA is used to analyze the relationship between the input and thepredicted output indicators. Finally, based on the UCI database processordataset, the effectiveness and superiority of the method are verified. Accordingto our experiments, our prediction method generates more reliable andaccurate estimations than traditional models.展开更多
文摘With the full implementation of the Code of Criminal Procedure, the application of the rules of the exclusion of the illegal evidences is more inclined to the protection of the human rights. However, in the process of the implementation of the new laws, the problems in view of the rules of the exclusion of the illegal evidences are also prominent, which are mainly reflected in the ambiguity of the scope of the application, the start of the program of the exclusion, and the formalization the trial certificates and other aspects. Therefore, in this article, the author starts from the concept of the illegal evidences, and expounds the principles of the exclusion and the abilities of the evidences, and especially explores the abilities of the evidences and the probative forces. From the differences between the two, the author strictly proves the virtualization of the standards, in order to provide the positive solutions for strengthening the exclusionary procedure of the illegal evidences.
基金Project (No. 51476040103JW13) supported by the National DefenseKey Laboratory of Target and Environment Feature of China
文摘Based on the framework of evidence theory, data fusion aims at obtaining a single Basic Probability Assignment (BPA) function by combining several belief functions from distinct information sources. Dempster’s rule of combination is the most popular rule of combinations, but it is a poor solution for the management of the conflict between various information sources at the normalization step. Even when it faces high conflict information, the classical Dempster-Shafer’s (D-S) evidence theory can involve counter-intuitive results. This paper presents a modified averaging method to combine conflicting evidence based on the distance of evidences; and also gives the weighted average of the evidence in the system. Numerical examples showed that the proposed method can realize the modification ideas and also will provide reasonable results with good convergence efficiency.
文摘Evidence theory has been widely used in the information fusion for its effectiveness of the uncertainty reasoning. However, the classical DS evidence theory involves counter-intuitive behaviors when the high conflict information exists. Based on the analysis of some modified methods, Assigning the weighting factors according to the intrinsic characteristics of the existing evidence sources is proposed, which is determined on the evidence distance theory. From the numerical examples, the proposed method provides a reasonable result with good convergence efficiency. In addition, the new rule retrieves to the Yager's formula when all the evidence sources contradict to each other completely.
文摘Although evidence theory has been widely used in information fusion due to its effectiveness of uncertainty reasoning, the classical DS evidence theory involves counter-intuitive behaviors when high conflict information exists. Many modification methods have been developed which can be classified into the following two kinds of ideas, either modifying the combination rules or modifying the evidence sources. In order to make the modification more reasonable and more effective, this paper gives a thorough analysis of some typical existing modification methods firstly, and then extracts the intrinsic feature of the evidence sources by using evidence distance theory. Based on the extracted features, two modified plans of evidence theory according to the corresponding modification ideas have been proposed. The results of numerical examples prove the good performance of the plans when combining evidence sources with high conflict information.
文摘Dempster-Shafer(D-S)evidence theory is a key technology for integrating uncertain information from multiple sources.However,the combination rules can be paradoxical when the evidence seriously conflict with each other.In the paper,we propose a novel combination algorithm based on unsupervised Density-Based Spatial Clustering of Applications with Noise(DBSCAN)density clustering.In the proposed mechanism,firstly,the original evidence sets are preprocessed by DBSCAN density clustering,and a successfully focal element similarity criteria is used to mine the potential information between the evidence,and make a correct measure of the conflict evidence.Then,two different discount factors are adopted to revise the original evidence sets,based on the result of DBSCAN density clustering.Finally,we conduct the information fusion for the revised evidence sets by D-S combination rules.Simulation results show that the proposed method can effectively solve the synthesis problem of high-conflict evidence,with better accuracy,stability and convergence speed.
文摘Since the implementation of the rules of the supplement and correction of the defective evidences, there are many problems in the practice. The actual investigations and researches also feedback that the judges also have a lot of problems in the face of the definition of the meaning of the defective evidences, the correction application, and the degree restrictions. Behind this reflects the contradiction between the stress of the prosecution organs in the criminal detection and the deepening of the resisting mechanism in the court. And the litigation structure of the "division of responsibilities among three authorities" and the trial mode of "the centralism of the book records of the cases" exacerbated this opposition. On the basis of clarifying the origin and the meanings of the defective evidences, the author of this paper analyzes the essence and its harm of the rule. Through the reflections of the problems existing in the practice, the author further defines the two types of the "defects" that shall not be allowed to correct.
基金This project was supported by the National "863" High Technology Research and Development Program of China(2001AA602021)
文摘Evidence theory is widely used in the field of target recognition. The invalidation problem of this theory when dealing with highly conflict evidences is a research hotspot. Several alternatives of the combination rule are analyzed and compared. A new combination approach is proposed. Calculate the reliabilities of evidence sources using existing evidences. Construct reliabilities judge matrixes and get the weights of each evidence source. Weight average all inputted evidences. Combine processed evidences with D-S combination rule repeatedly to identify a target. The application in multi-sensor target reeognition as well as the comparison with typical alternatives all validated that this approach can dispose highly conflict evidences efficiently and get reasonable reeognition results rapidly.
基金This work was supported in part by the Natural Science Foundation of China under Grant 62203461 and Grant 62203365in part by the Postdoctoral Science Foundation of China under Grant No.2020M683736+3 种基金in part by the Teaching reform project of higher education in Heilongjiang Province under Grant Nos.SJGY20210456 and SJGY20210457in part by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038in part by the graduate academic innovation project of Harbin Normal University under Grant Nos.HSDSSCX2022-17,HSDSSCX2022-18 andHSDSSCX2022-19in part by the Foreign Expert Project of Heilongjiang Province under Grant No.GZ20220131.
文摘Expert knowledge is the key to modeling milling fault detection systems based on the belief rule base.The construction of an initial expert knowledge base seriously affects the accuracy and interpretability of the milling fault detection model.However,due to the complexity of the milling system structure and the uncertainty of the milling failure index,it is often impossible to construct model expert knowledge effectively.Therefore,a milling system fault detection method based on fault tree analysis and hierarchical BRB(FTBRB)is proposed.Firstly,the proposed method uses a fault tree and hierarchical BRB modeling.Through fault tree analysis(FTA),the logical correspondence between FTA and BRB is sorted out.This can effectively embed the FTA mechanism into the BRB expert knowledge base.The hierarchical BRB model is used to solve the problem of excessive indexes and avoid combinatorial explosion.Secondly,evidence reasoning(ER)is used to ensure the transparency of the model reasoning process.Thirdly,the projection covariance matrix adaptation evolutionary strategies(P-CMA-ES)is used to optimize the model.Finally,this paper verifies the validity model and the method’s feasibility techniques for milling data sets.
基金supported by Pre-Research Foundation of PLA(LY200838014)supported by the PLA Research Program of Science and Technology (KJ08062)
文摘Aiming at the invalidation of DS theory dealing with the evidence in a high conflict and reducing confidence level of DSm theory processing a low conflict,this paper proposes an interactive-adaptive combination rule. Adopting the angle similarity based on hyper-power set as the weight of generalized Dempster rule and PCR rule,the new rule adaptively processes various evidence combination issues. In this way,the rule can obtain not only the better fusion of decision making effect in a low conflict,but also the solution to the synthesis in a high conflict. Simulation analysis demonstrates the validity and applicability from this rule of combination.
基金This work was supported in part by the Postdoctoral Science Foundation of China under Grant No.2020M683736in part by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038+2 种基金in part by the innovation practice project of college students in Heilongjiang Province under Grant Nos.202010231009,202110231024,and 202110231155in part by the basic scientific research business expenses scientific research projects of provincial universities in Heilongjiang Province Grant Nos.XJGZ2021001in part by the Education and teaching reform program of 2021 in Heilongjiang Province under Grant No.SJGY20210457.
文摘Prediction systems are an important aspect of intelligent decisions.In engineering practice,the complex system structure and the external environment cause many uncertain factors in the model,which influence the modeling accuracy of the model.The belief rule base(BRB)can implement nonlinear modeling and express a variety of uncertain information,including fuzziness,ignorance,randomness,etc.However,the BRB system also has two main problems:Firstly,modeling methods based on expert knowledge make it difficult to guarantee the model’s accuracy.Secondly,interpretability is not considered in the optimization process of current research,resulting in the destruction of the interpretability of BRB.To balance the accuracy and interpretability of the model,a self-growth belief rule basewith interpretability constraints(SBRB-I)is proposed.The reasoning process of the SBRB-I model is based on the evidence reasoning(ER)approach.Moreover,the self-growth learning strategy ensures effective cooperation between the datadriven model and the expert system.A case study showed that the accuracy and interpretability of the model could be guaranteed.The SBRB-I model has good application prospects in prediction systems.
基金supported by the Military Scientific Research Program(41401020301).
文摘To address the issue of rule premise combination explosion in the construction of the traditional complete conjunctive belief rule base(BRB),this paper introduces an orthogonal design method to reduce the conjunctive BRB.The reasoning method based on reduced conjunctive BRB is designed with the help of the conversion technology from conjunctive BRB to disjunctive BRB.Finally,the operational mission effectiveness evaluation is taken as an example to verify the proposed method.The results show that the method proposed in this paper is feasible and effective.
基金This work is supported in part by the Postdoctoral Science Foundation of China under Grant No.2020M683736in part by the Teaching reform project of higher education in Heilongjiang Province under Grant No.SJGY20210456in part by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038.
文摘The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can initially provide a solution to low prediction accuracy. However, theinterpretability of the model and the traceability of the results still warrantfurther investigation. Therefore, a processor performance prediction methodbased on interpretable hierarchical belief rule base (HBRB-I) and globalsensitivity analysis (GSA) is proposed. The method can yield more reliableprediction results. Evidence reasoning (ER) is firstly used to evaluate thehistorical data of the processor, followed by a performance prediction modelwith interpretability constraints that is constructed based on HBRB-I. Then,the whale optimization algorithm (WOA) is used to optimize the parameters.Furthermore, to test the interpretability of the performance predictionprocess, GSA is used to analyze the relationship between the input and thepredicted output indicators. Finally, based on the UCI database processordataset, the effectiveness and superiority of the method are verified. Accordingto our experiments, our prediction method generates more reliable andaccurate estimations than traditional models.