Zirconium-based metal-organic framework UiO-66 was successfully prepared by solvothermal method,and UiO-66 was modified by adding regulators such as formic acid,acetic acid,and hydrochloric acid.The NH_(3)-SCR reactiv...Zirconium-based metal-organic framework UiO-66 was successfully prepared by solvothermal method,and UiO-66 was modified by adding regulators such as formic acid,acetic acid,and hydrochloric acid.The NH_(3)-SCR reactivity of the samples was evaluated by the denitration activity evaluation system,and the UiO-66 and the regulator-modified UiO-66 were characterized by XRD,SEM,BET,FTIR,TG,NH_(3)-TPD,etc.,the effects of regulator types on the structure and properties of UiO-66 were investigated.The experimental results show that,after adding the modifier,the morphology of UiO-66 changes from irregular quadrilateral with serious agglomeration to particles with regular crystal shape and good dispersibility,and the crystal morphology of the catalyst is improved.In addition,after adding the modifier,UiO-66 has a larger specific surface area and stronger surface acidity,which optimizes the catalytic performance of UiO-66.The catalytic performance test results of NH_(3)-SCR show that the low-temperature activity of UiO-66 is poor,and it only shows a certain catalytic activity at higher temperatures.The catalytic activity of UiO-66 was significantly improved after adding the regulator.Among them,the UiO-66-HCl modified with hydrochloric acid had the best catalytic activity,and the denitration rate reached 70%when the denitration temperature was 380℃.展开更多
In order to remove gas-phase mercury and NOx from flue gas, experimental studies on flue gas mercury oxidation removal and denitration of Guizhou anthracite combustion with NH4Br addition were carried out. The influen...In order to remove gas-phase mercury and NOx from flue gas, experimental studies on flue gas mercury oxidation removal and denitration of Guizhou anthracite combustion with NH4Br addition were carried out. The influence of NH4Br addition on the ignition temperature and combustion characteristics was studied using a thermogravimetric analyzer. The effects of the NHaBr addition amount on gas-phase mercury oxidation and removal were investigated in a bench scale of 6 kW fluidized bed combustor (FBC). Mercury concentrations in flue gas were determined by the Ontario hydro method (OHM) and the mercury mass balance was obtained. Results show that the NH4Br addition has little influence on the ignition temperature of Guizhou anthracite. With the mercury mass balance of 95.47%, the proportion of particulate mercury Hg^p, gaseous mercury Hg^0 and Hg^2+ are 75.28%, 11.60% and 13. 12%, respectively, as raw coal combustion. The high particulate mercury Hg^p in flue gas is caused by the high unburned carbon content in fly ash. When the NH4Br addition amount increases from 0 to 0. 3%, the concentration of gaseous Hg^0 and Hg^2+ in flue gas decreases continuously, leading to the Hg^p increase accordingly. The oxidation rate of Hg^0 is positively correlated to the Br addition amount. It demonstrates that coal combustion with NH4Br addition can promote Hg^0 oxidation and removal. NOx concentration in flue gas exhibits a descending trend with the NHaBr addition and the removal rate reaches 17.31% with the addition amount of 0.3%. Adding NH4Br to coal also plays a synergistic role in denitration.展开更多
Gradiently denitrated gun propellant(GDGP)prepared by a“gradient denitration”strategy is obviously superior in progressive burning performance to the traditional deterred gun propellant.Currently,the preparation of ...Gradiently denitrated gun propellant(GDGP)prepared by a“gradient denitration”strategy is obviously superior in progressive burning performance to the traditional deterred gun propellant.Currently,the preparation of GDGP employed a tedious two-step method involving organic solvents,which hinders the large-scale preparation of GDGP.In this paper,GDGP was successfully prepared via a novelty and environmentally friendly one-step method.The obtained samples were characterized by FT-IR,Raman,SEM and XPS.The results showed that the content of nitrate groups gradiently increased from the surface to the core in the surface layer of GDGP and the surface layer of GDGP exhibited a higher compaction than that of raw gun propellant,with a well-preserved nitrocellulose structure.The denitration process enabled the propellant surface with regressive energy density and good progressive burning performance,as confirmed by oxygen bomb and closed bomb test.At the same time,the effects of different solvents on the component loss of propellant were compared.The result showed that water caused the least component loss.Finally,the stability of GDGP was confirmed by methyl-violet test.This work not only provided environmentally friendly,simple and economic preparation of GDGP,but also confirmed the stability of GDGP prepared by this method.展开更多
Spent catalyst used for denitration by selective catalytic reduction(spent SCR denitration catalysts) is one of the important urban mines due to the high content of TiO_(2)(~85 wt%) and the massive accumulation amount...Spent catalyst used for denitration by selective catalytic reduction(spent SCR denitration catalysts) is one of the important urban mines due to the high content of TiO_(2)(~85 wt%) and the massive accumulation amount(over 100,000 tons),therefore,value-added reutilization of titanium in spent SCR catalysts is considerably meaningful.In this paper,a novel method is proposed for converting the titanium oxide in spent SCR denitration catalysts to metallic titanium.Specifically,titanium dioxide(TiO_(2)) was firstly obtained from spent SCR denitration catalysts after removing the impurities by hydrometallurgy process.Then,TiO_(2) is converted to Ti_(2)CO by carbothermic reduction method,and Ti_(2)CO was further purified by oleic acid capture.Finally,by utilizing the as-prepared Ti_(2)CO as the consumable anode in the NaCl-KCl molten salt,high-purity metallic titanium was deposited at cathode,all confirming the feasibility for the conversion of low-grade TiO_(2) in the spent catalysts,from 60 wt% to high-purity metallic Ti(99.5 wt%), furthermore,the energy consumption of this process is 3950 kWh tonne-1 Ti,which is lower than that of most traditional titanium metallurgy methods.The method herein can provide new insights for the value-added recycling of titanium resources in urban mines.展开更多
With the advantages of high combustion efficiency, wide fuel flexibility and low concentrations of discharged pollutants, circulating fluid- ized bed (CFB) boiler has been widely used in recent years. However, in or...With the advantages of high combustion efficiency, wide fuel flexibility and low concentrations of discharged pollutants, circulating fluid- ized bed (CFB) boiler has been widely used in recent years. However, in order to meet the requirement of new emission standard, it's necessary to add flue gas desulfurization and denitration devices. In this paper, the choice of flue gas purification processes for CFB boiler has been discussed firstly, and then the economy and rationality of the SNCR + CFB-FGD + COA comprehensive solution to flue gas desulfurization and denitration have been analyzed.展开更多
A series of V2O5 with various morphologies was prepared by the hydrothermal method and loaded on the modified active coke(AC) which was prepared by the impregnation methods. The prepared samples were characterized b...A series of V2O5 with various morphologies was prepared by the hydrothermal method and loaded on the modified active coke(AC) which was prepared by the impregnation methods. The prepared samples were characterized by BET, Boehm titration test, XRD, SEM and EDS. The SEM exhibited that the morphologies of the samples prepared were signifi cantly different from each other. Then the samples prepared were studied on the selective catalytic reduction(SCR) of NO with ammonia in the presence of oxygen. The SCR activity measurements were undertaken in a fixed-bed unit with a sieve plate in the middle. From the contrastive experiments, the results showed that linear V2O5/AC had the best denitration performance and the denitration rate was up to 57.41%. It was speculated that the linear V2O5 with the crystal faces(110) may show the best performance in SCR. And the durability results also showed that linear V2O5/AC produced a denitration rate of 47.7% after three regenerations.展开更多
In this paper, an integrated desulfurization and denitrification technology is proposed for ultra-low emissions of SO2 and NOx in the steel, power and cement industries. A cost-effective and operationally efficient co...In this paper, an integrated desulfurization and denitrification technology is proposed for ultra-low emissions of SO2 and NOx in the steel, power and cement industries. A cost-effective and operationally efficient control strategy is realized through a forced oxidation-absorption-reduction process, which reduces equipment investment and operating costs. The technology was adapted to continuous and intermittent denitrification in different temperature zones, promoting the recycling of desulfurization and denitrification products. The study also explored the use of a highly active absorbent obtained by the hydration reaction of coal ash and lime from a power company for the desulfurization and denitrification of sintered flue gases in iron and steel mills, which produces by-products that can be used as retarding agents in the cement industry, resulting in a circular economy. The article emphasizes the importance of improving the lime digestion process and developing new denitrification agents for environmentally safe and cost-effective flue gas treatment.展开更多
The direct cleavage of C–NO_(2)bonds for reductive denitration of nitroarenes remains a challenging transformation in synthetic organic chemistry.Herein,we report a biocompatible palladium-deposited graphdiyne nanoca...The direct cleavage of C–NO_(2)bonds for reductive denitration of nitroarenes remains a challenging transformation in synthetic organic chemistry.Herein,we report a biocompatible palladium-deposited graphdiyne nanocatalyst(Pd@GDY/DSPE-PEG)that can catalyze reductive denitration of nitroarenes under ambient physiological conditions.Mechanistic studies support this transformation via the oxidative addition of nitroarenes with Pd(0)and subsequent ligand exchange to form arylpalladium hydride.This one-step reductive denitration via Pd@GDY/DSPE-PEG successfully facilitates the repair of the nitrated proteins arising from endogenic ONOO−and restores their physiological function,including blocking the apoptosis pathway in living cells.Moreover,Pd@GDY/DSPE-PEG was further successfully applied for catalytic denitration to reduce the level of 3-nitrotyrosine residues of proteins located in the mouse brain hippocampus in vivo.This study provides an ideal strategy for designing highly active enzymatic mimicking synthetic catalysts for the regulation of the nitrated protein level and the detoxification of nitrative damage of living cells and tissues.展开更多
Performance of simultaneous desulfurization and denitration using the solution of NaClO2 and NaClO as new-style complex absorbent was investigated experimentally in self-designed bench scale bubbling reactor. The effe...Performance of simultaneous desulfurization and denitration using the solution of NaClO2 and NaClO as new-style complex absorbent was investigated experimentally in self-designed bench scale bubbling reactor. The effects of main parameters, such as the concentrations of NaClO2 and of NaClO, solution pH and reaction temperature and so on, on removal efficiencies of SO2 and NOx, were examined, then the optimal conditions were established, in which the molar ratio of NaClO to NaClO2 was 1:1, the reaction temperature was 50℃ and the solution pH was 5.5. The removal efficiencies of SO2 and NO under the optimal conditions were 100% and 89.2%, respectively. The mechanism of simultaneous removal based on complex absorbent was proposed by analyzing the removal products and the electrode potentials of related species, namely SO2 and NO are oxi- dized by chlorite anion, hypochlorite, chlorine dioxide and chlorine contained in complex absorbent. In thermodynamic aspect, simultaneous desulfurization and denitration reactions in liquid phase can happen spontaneously and completely, and are all exothermic reactions. It was confirmed by kinetics that for simultaneous desulfurization and denitration, the reaction order and average activation energy of SO2 were 1 and 21.6 kJ·mol^-1, respectively, and those of NO were 1 and 8.2 kJ·mol^-1, respectively.展开更多
Sm and Ho were doped in Ce-Mn/TiO_(2)catalyst respectively to enhance its denitration performance at low temperature.X-ray diffraction(XRD),N2adsorption-desorption,X-ray photoelectron spectroscopy(XPS),NH3-temperature...Sm and Ho were doped in Ce-Mn/TiO_(2)catalyst respectively to enhance its denitration performance at low temperature.X-ray diffraction(XRD),N2adsorption-desorption,X-ray photoelectron spectroscopy(XPS),NH3-temperature programmed desorption(NH3-TPD),H2-temperature programmed reduction(H2-TPR)and in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)techniques were used to analyze the structure and performance of catalysts.The results demonstrate that Ho doping increases the amount of acid sites and improves low temperature redox property of Ce-Mn/TiO_(2),which lead to excellent DeNOxperformance of Ho-Ce-Mn/TiO_(2)in the whole reaction temperature range.Sm doping results in decline of redox property,but it is beneficial to increasing the acid sites of Ce-Mn/TiO_(2).The increased surface acid sites and moderate oxidative ability impart Sm-Ce-Mn/TiO_(2)higher denitration activity and N2selectivity at temperature above 150℃.Lewis acid sites and redox property are the main factors affecting the activity of catalysts.Doping of Ho and Sm both improves sulfur resistance performance of Ce-Mn/TiO_(2)by inhibiting the adsorption of SO_(2)and formation of sulfate.Ce-Mn/TiO_(2)modified by Ho shows better sulfur resistance than that doped with Sm because of its more surface acid sites.展开更多
The purpose of this work is to explore the effects of the introduction methods of Ce^4+and Zr^4+on the physicochemical properties,activity,and K tolerance of V2 O5-WO3/TiO2 catalyst for the selective catalytic reducti...The purpose of this work is to explore the effects of the introduction methods of Ce^4+and Zr^4+on the physicochemical properties,activity,and K tolerance of V2 O5-WO3/TiO2 catalyst for the selective catalytic reduction of NOx by NH3.Four different methods,namely pre-impregnation,post-impregnation,coimpregnation,and co-precipitation,were used to synthesize a series of V2 O5-WO3-TiO2-CeO2-ZrO2 catalysts.The catalysts were characterized by XRD,BET,NH3-TPD,XPS,and H2-TPR techniques.Moreover,the activity and anti-K poisoning performance were tested by an NH3-SCR model reaction.The results show that the introduction of Ce^4+and Zr^4+can improve the catalytic performance of V2O5-WO3/TiO2 catalyst,but the impregnation method cannot enhance the anti-K poisoning performance.Ce^4+and Zr^4+introduced by co-precipitation method can effectively improve the tolerance of K,which is mainly due to the incorporation of Ce^4+and Zr^4+into TiO2 lattice to form a uniform TiO2-CeO2-ZrO2 solid solution,resulting in the optimal surface acidity and redox performance,and reducing the decreases caused by Kpoisoning.Furthermore,based on the best introduction method,we further optimized the molar ratio of Ce^4+/Zr^4+,It is found that the catalyst exhibits the best anti-K poisoning performance when the molar ratio of Ce^4+/Zr^4+is 2:1.展开更多
Selective catalytic reduction technology using NH3 as a reducing agent(NH3-SCR) is an effective control method to remove nitrogen oxides. TiO2-supported vanadium oxide catalysts with different levels of Ce and Sb mo...Selective catalytic reduction technology using NH3 as a reducing agent(NH3-SCR) is an effective control method to remove nitrogen oxides. TiO2-supported vanadium oxide catalysts with different levels of Ce and Sb modification were prepared by an impregnation method and were characterized by X-ray diffractometer(XRD), Brunauer-Emmett-Teller(BET), Transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FT-IR), UV-Vis diffuse reflectance spectroscopy(UV-Vis DRS), Raman and Hydrogen temperature-programmed reduction(H2-TPR). The catalytic activities of V5 CexS by/TiO2 catalysts for denitration were investigated in a fixed bed flow microreactor. The results showed that cerium, vanadium and antimony oxide as the active components were well dispersed on TiO2, and the catalysts exhibited a large number of d-d electronic transitions, which were helpful to strengthen SCR reactivity. The V5 CexS by/TiO2 catalysts exhibited a good low temperature NH3-SCR catalytic activity. In the temperature range of 210 to 400℃, the V5 CexS by/TiO2 catalysts gave NO conversion rates above 90%. For the best V5Ce35Sb2/TiO2 catalyst, at a reaction temperature of 210℃, the NO conversion rate had already reached 90%. The catalysts had different catalytic activity with different Ce loadings. With the increase of Ce loading, the NO conversion rate also increased.展开更多
Based on the basic principle and mechanism of flue gas denitrification,the commonly used catalysts for flue gas denitrification were introduced firstly,and then the catalytic performance,stability and reaction mechani...Based on the basic principle and mechanism of flue gas denitrification,the commonly used catalysts for flue gas denitrification were introduced firstly,and then the catalytic performance,stability and reaction mechanism of catalysts in the market were analyzed.Different types of catalysts were studied to look for green catalysts with high activity,sulfur resistance,water vapor resistance and other advantages.The mechanism of denitration reaction of green catalysts was discussed,and the laws of formation,propagation and consumption of active species in the reaction process were revealed to provide theoretical basis for optimizing catalyst design and improving reaction conditions.Then the research status and problems of new catalysts for flue gas denitrification were described.Finally,the future development direction of green catalysts for flue gas denitration was discussed to improve the performance and stability of catalysts and meet the performance requirements of denitration catalysts in different industries.展开更多
With the vigorous development of China’s iron and steel industry and the introduction of ultra-low emission policies, the emission of pollutants such as SO2 and NOx has received unprecedented attention. At present, t...With the vigorous development of China’s iron and steel industry and the introduction of ultra-low emission policies, the emission of pollutants such as SO2 and NOx has received unprecedented attention. At present, the commonly used denitrification methods include selective catalytic reduction (SCR), active coke, etc. As a newly developed denitrification technology, oxidation denitrification is not widely used, and the technical level is mixed, and there might be problems such as yellow smoke, secondary pollution and ozone escape in the practical application. In this paper, problems existing in the denitrification process of sintering flue gas oxidation are analyzed, and a 320 m2 sintering machine is taken as an example. Comparing the denitrification technology of sintering industry, it could be seen that the denitrification technology route of oxidation method has low pollution, low cost and high comprehensive environmental benefits, and has greatly potential development.展开更多
Vanadium-titanium-based catalysts are the most widely used industrial materials for NO_x removal from coal-fired power plants. Owing to their relatively poor low-temperature deNO_x activity, low thermal stability, ins...Vanadium-titanium-based catalysts are the most widely used industrial materials for NO_x removal from coal-fired power plants. Owing to their relatively poor low-temperature deNO_x activity, low thermal stability, insufficient Hg^0 oxidation activity, SO_2 oxidation, ammonia slip, and other disadvantages,modifications to traditional vanadium-titanium-based selective catalytic reduction(SCR)catalysts have been attempted by many researchers to promote their relevant performance. This article reviewed the research progress of modified vanadium-titanium-based SCR catalysts from seven aspects, namely,(1) improving low-temperature deNO_x efficiency,(2) enhancing thermal stability,(3) improving Hg^0 oxidation efficiency,(4) oxidizing slip ammonia,(5) reducing SO_2 oxidation,(6) increasing alkali resistance, and(7) others. Their catalytic performance and the influence mechanisms have been discussed in detail. These catalysts were also divided into different categories according to their modified components such as noble metals(e.g., silver, ruthenium), transition metals(e.g., manganese, iron, copper, zirconium, etc.), rare earth metals(e.g., cerium, praseodymium),and other metal chlorides(e.g., calcium chloride, copper chloride) and non-metals(fluorine,sulfur, silicon, nitrogen, etc.). The advantages and disadvantages of these catalysts were summarized.Based on previous studies and the author's point of view, doping the appropriate modified components is beneficial to further improve the overall performance of vanadium-titanium-based SCR catalysts. This has enormous development potential and is a promising way to realize the control of multiple pollutants on the basis of the existing flue gas treatment system.展开更多
We rationally designed a high performance denitration(De-NOx) catalyst based on a micrometer-sized spherical Mn–Ce–Fe–Ti(CP-SD)catalyst for selective catalytic reduction(SCR). This was prepared by a co-precipitatio...We rationally designed a high performance denitration(De-NOx) catalyst based on a micrometer-sized spherical Mn–Ce–Fe–Ti(CP-SD)catalyst for selective catalytic reduction(SCR). This was prepared by a co-precipitation and spray drying(CP-SD) method. The catalyst was systematically characterized, and its morphological structure and surface properties were identified. Compare with conventional Mn–Ce–Fe–Ti(CP) catalysts, the Mn–Ce–Fe–Ti(CP-SD) catalyst had superior surface-adsorbed oxygen leading to enhanced 'fast NH3-SCR' reaction. The asobtained Mn–Ce–Fe–Ti(CP-SD) catalyst offered excellent NO conversion and N2 selectivity of 100.0% and 84.8% at 250℃, respectively, with a gas hourly space velocity(GHSV) of 40,000 h-1. The porous micro-spherical structure provides a larger surface area and more active sites to adsorb and activate the reaction gases. In addition, the uniform distribution and strong interaction of manganese, iron, cerium, and titanium oxide species improved H2O and SO2 resistance. The results showed that the Mn–Ce–Fe–Ti(CP-SD) catalyst could be used prospectively as a denitration(De-NOx) catalyst.展开更多
Al_(x)/HKUST-1(x=1/24,1/12,1/6,1/3),one of the bimetallic copper-based organic framework materials,was successfully prepared by the synthetic exchange method and characterized by X-ray diffraction(XRD),scanning electr...Al_(x)/HKUST-1(x=1/24,1/12,1/6,1/3),one of the bimetallic copper-based organic framework materials,was successfully prepared by the synthetic exchange method and characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),specific surface area(BET),thermogravimetric analysis(TG),infrared spectra(IR),X-ray photoelectron spectroscopy(XPS),and H_(2)-temperature programmed reduction(H_(2)-TPR).The findings indicated that Al_(x)/HKUST-1 maintained the octahedral morphology of its precursor(HKUST-1).The thermal stability and catalytic reduction ability of HKUST-1 skeleton were improved by doping aluminum(Al^(3+)).Al_(1/12)/HKUST-1 showed the best performance among all samples,with a nitric oxide(NO)conversion rate of 100%at 210℃(50℃lower than that of HKUST-1).The valence kind of Al,Cu,and O in Al_(1/12)/HKUST-1 did not change after the catalytic reaction,but the contents of Al,Cu,and O in different forms changed significantly.The catalytic process of the Al_(x)/HKUST-1 followed a Langmuir-Hinshelwood mechanism.展开更多
This paper presents a study on the process engineering aspects of relevance to the industrial implementation of ThO2 and (Th, U)O2 mixed oxide (MOX) pellet type fuel manufacturing. The paper in particular focuses on t...This paper presents a study on the process engineering aspects of relevance to the industrial implementation of ThO2 and (Th, U)O2 mixed oxide (MOX) pellet type fuel manufacturing. The paper in particular focuses on the recycling of thoria based fuel production scrap which is an economically important component in the fuel manufacturing process. The thoria based fuels are envisaged for Advanced Heavy Water Reactor (AHWR) and other reactors important to the Indian Nuclear Power Programme. A process was developed for recycling the chemically clean, off-specification and defective sintered ThO2 and (Th, U)O2 MOX nuclear fuel pellets. ThO2 doesn’t undergo oxidation or reduction and thus, more traditional methods of recycling are impractical. The integrated process was developed by combining three basic approaches of recycling namely mechanical micronisation, air oxidation (for MOX) and microwave dissolution-denitration. A thorough investigation of the influence of several variables as heating method, UO2 content, fluoride and polyvinyl alcohol (PVA) addition during microwave dissolution-denitration was recorded on the product characteristics. The suitability evaluation of the recycled powder for re-fabrication of the fuel was carried out by analyzing the particle size, BET specific surface area, phase using XRD, bulk density and impurities. The physical and chemical properties of recycled powder obtained from the sintered (Th1-y, Uy)O2 (y;0 - 30 wt%) pellets advocate 100% utilisation for fuel re-fabrication. Recycled ThO2 by integrated process showed distinctly high sinterability compared to standard powder evaluated in terms of surface area and particle size.展开更多
Photo-assisted SCR(PSCR) offers a potential solution for removal of NO at room temperature. MnTiO_(x)as PSCR catalyst exhibits superior performance with NO removal of 100% at the room temperature. Electron paramagneti...Photo-assisted SCR(PSCR) offers a potential solution for removal of NO at room temperature. MnTiO_(x)as PSCR catalyst exhibits superior performance with NO removal of 100% at the room temperature. Electron paramagnetic resonance(EPR) analysis revealed the presence of numerous oxygen vacancies on MnTiO_(x). Optical carrier density functional theory(DFT) calculations showed that the threedimensional orbital hybridization of Mn and Ti is significantly enhanced under light irradiation. The MnTiO_(x)catalyst exhibited excellent electron–hole separation ability, which can adsorbe NH_(3)and dissociate to form NH_(2)fragments and H atoms. In-situ diffuse reflectance infrared fourier-transform spectroscopy(DRIFTS) indicated that the optical carrier enhanced NH_(3)adsorption on MnTiO_(x), which makes it possess excellent PSCR activity. This work provided an additional strategy to NO removal with PSCR catalysts and showed potential for use in photocatalysis.展开更多
In this paper,the research status and catalytic mechanism of activated carbon catalysts,molecular sieve catalysts,noble metal catalysts and transition metal oxide catalysts used for NO catalytic oxidation were studied...In this paper,the research status and catalytic mechanism of activated carbon catalysts,molecular sieve catalysts,noble metal catalysts and transition metal oxide catalysts used for NO catalytic oxidation were studied to provide reference for future research.展开更多
基金Funded by the National Key Research and Development Program of China(No.2016YFC0209302)。
文摘Zirconium-based metal-organic framework UiO-66 was successfully prepared by solvothermal method,and UiO-66 was modified by adding regulators such as formic acid,acetic acid,and hydrochloric acid.The NH_(3)-SCR reactivity of the samples was evaluated by the denitration activity evaluation system,and the UiO-66 and the regulator-modified UiO-66 were characterized by XRD,SEM,BET,FTIR,TG,NH_(3)-TPD,etc.,the effects of regulator types on the structure and properties of UiO-66 were investigated.The experimental results show that,after adding the modifier,the morphology of UiO-66 changes from irregular quadrilateral with serious agglomeration to particles with regular crystal shape and good dispersibility,and the crystal morphology of the catalyst is improved.In addition,after adding the modifier,UiO-66 has a larger specific surface area and stronger surface acidity,which optimizes the catalytic performance of UiO-66.The catalytic performance test results of NH_(3)-SCR show that the low-temperature activity of UiO-66 is poor,and it only shows a certain catalytic activity at higher temperatures.The catalytic activity of UiO-66 was significantly improved after adding the regulator.Among them,the UiO-66-HCl modified with hydrochloric acid had the best catalytic activity,and the denitration rate reached 70%when the denitration temperature was 380℃.
基金The National Natural Science Foundation of China(No.51376046,51076030)the National Key Technology R&D Program of China during the 12th Five-Year Plan Period(No.2012BAA02B01)+2 种基金the United Creative Foundation of Jiangsu Province(No.BY2013073-10)the Fundamental Research Funds for the Central Universitiesthe Scientific Innovation Research of College Graduates in Jiangsu Province(CXZZ13_0093,KYLX_0115,KYLX_0184)
文摘In order to remove gas-phase mercury and NOx from flue gas, experimental studies on flue gas mercury oxidation removal and denitration of Guizhou anthracite combustion with NH4Br addition were carried out. The influence of NH4Br addition on the ignition temperature and combustion characteristics was studied using a thermogravimetric analyzer. The effects of the NHaBr addition amount on gas-phase mercury oxidation and removal were investigated in a bench scale of 6 kW fluidized bed combustor (FBC). Mercury concentrations in flue gas were determined by the Ontario hydro method (OHM) and the mercury mass balance was obtained. Results show that the NH4Br addition has little influence on the ignition temperature of Guizhou anthracite. With the mercury mass balance of 95.47%, the proportion of particulate mercury Hg^p, gaseous mercury Hg^0 and Hg^2+ are 75.28%, 11.60% and 13. 12%, respectively, as raw coal combustion. The high particulate mercury Hg^p in flue gas is caused by the high unburned carbon content in fly ash. When the NH4Br addition amount increases from 0 to 0. 3%, the concentration of gaseous Hg^0 and Hg^2+ in flue gas decreases continuously, leading to the Hg^p increase accordingly. The oxidation rate of Hg^0 is positively correlated to the Br addition amount. It demonstrates that coal combustion with NH4Br addition can promote Hg^0 oxidation and removal. NOx concentration in flue gas exhibits a descending trend with the NHaBr addition and the removal rate reaches 17.31% with the addition amount of 0.3%. Adding NH4Br to coal also plays a synergistic role in denitration.
文摘Gradiently denitrated gun propellant(GDGP)prepared by a“gradient denitration”strategy is obviously superior in progressive burning performance to the traditional deterred gun propellant.Currently,the preparation of GDGP employed a tedious two-step method involving organic solvents,which hinders the large-scale preparation of GDGP.In this paper,GDGP was successfully prepared via a novelty and environmentally friendly one-step method.The obtained samples were characterized by FT-IR,Raman,SEM and XPS.The results showed that the content of nitrate groups gradiently increased from the surface to the core in the surface layer of GDGP and the surface layer of GDGP exhibited a higher compaction than that of raw gun propellant,with a well-preserved nitrocellulose structure.The denitration process enabled the propellant surface with regressive energy density and good progressive burning performance,as confirmed by oxygen bomb and closed bomb test.At the same time,the effects of different solvents on the component loss of propellant were compared.The result showed that water caused the least component loss.Finally,the stability of GDGP was confirmed by methyl-violet test.This work not only provided environmentally friendly,simple and economic preparation of GDGP,but also confirmed the stability of GDGP prepared by this method.
基金the National Natural Science Foundation of China(Grant No.51804277)supported by the State Key Laboratory of Special Rare Metal Materials(No.SKL2020K004)+1 种基金Northwest Rare Metal Materials Research Institutesupported by the State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization(No.CNMRCUKF2008)。
文摘Spent catalyst used for denitration by selective catalytic reduction(spent SCR denitration catalysts) is one of the important urban mines due to the high content of TiO_(2)(~85 wt%) and the massive accumulation amount(over 100,000 tons),therefore,value-added reutilization of titanium in spent SCR catalysts is considerably meaningful.In this paper,a novel method is proposed for converting the titanium oxide in spent SCR denitration catalysts to metallic titanium.Specifically,titanium dioxide(TiO_(2)) was firstly obtained from spent SCR denitration catalysts after removing the impurities by hydrometallurgy process.Then,TiO_(2) is converted to Ti_(2)CO by carbothermic reduction method,and Ti_(2)CO was further purified by oleic acid capture.Finally,by utilizing the as-prepared Ti_(2)CO as the consumable anode in the NaCl-KCl molten salt,high-purity metallic titanium was deposited at cathode,all confirming the feasibility for the conversion of low-grade TiO_(2) in the spent catalysts,from 60 wt% to high-purity metallic Ti(99.5 wt%), furthermore,the energy consumption of this process is 3950 kWh tonne-1 Ti,which is lower than that of most traditional titanium metallurgy methods.The method herein can provide new insights for the value-added recycling of titanium resources in urban mines.
基金Supported by the National High Technology Research and Develop-ment Program of China(863 Program)(2013AA065403)Major Sci-ence and Technology Project of Fujian Province,China(2011HZ0005-1)+1 种基金International Science and Technology CooperationProgram(2010DFB93990)Natural Science Foundation of FujianProvince,China(2014J06020)
文摘With the advantages of high combustion efficiency, wide fuel flexibility and low concentrations of discharged pollutants, circulating fluid- ized bed (CFB) boiler has been widely used in recent years. However, in order to meet the requirement of new emission standard, it's necessary to add flue gas desulfurization and denitration devices. In this paper, the choice of flue gas purification processes for CFB boiler has been discussed firstly, and then the economy and rationality of the SNCR + CFB-FGD + COA comprehensive solution to flue gas desulfurization and denitration have been analyzed.
基金Funded by the Key Projects in the Technology Pillar Program during the Twelfth Five-Year Plan Period(No.2011BAB05B05)
文摘A series of V2O5 with various morphologies was prepared by the hydrothermal method and loaded on the modified active coke(AC) which was prepared by the impregnation methods. The prepared samples were characterized by BET, Boehm titration test, XRD, SEM and EDS. The SEM exhibited that the morphologies of the samples prepared were signifi cantly different from each other. Then the samples prepared were studied on the selective catalytic reduction(SCR) of NO with ammonia in the presence of oxygen. The SCR activity measurements were undertaken in a fixed-bed unit with a sieve plate in the middle. From the contrastive experiments, the results showed that linear V2O5/AC had the best denitration performance and the denitration rate was up to 57.41%. It was speculated that the linear V2O5 with the crystal faces(110) may show the best performance in SCR. And the durability results also showed that linear V2O5/AC produced a denitration rate of 47.7% after three regenerations.
文摘In this paper, an integrated desulfurization and denitrification technology is proposed for ultra-low emissions of SO2 and NOx in the steel, power and cement industries. A cost-effective and operationally efficient control strategy is realized through a forced oxidation-absorption-reduction process, which reduces equipment investment and operating costs. The technology was adapted to continuous and intermittent denitrification in different temperature zones, promoting the recycling of desulfurization and denitrification products. The study also explored the use of a highly active absorbent obtained by the hydration reaction of coal ash and lime from a power company for the desulfurization and denitrification of sintered flue gases in iron and steel mills, which produces by-products that can be used as retarding agents in the cement industry, resulting in a circular economy. The article emphasizes the importance of improving the lime digestion process and developing new denitrification agents for environmentally safe and cost-effective flue gas treatment.
基金support from the National Natural Science Foundation of China(grant nos.22021002,22020102005,and 22022705)the CAS-Croucher Funding Scheme for Joint Laboratories.
文摘The direct cleavage of C–NO_(2)bonds for reductive denitration of nitroarenes remains a challenging transformation in synthetic organic chemistry.Herein,we report a biocompatible palladium-deposited graphdiyne nanocatalyst(Pd@GDY/DSPE-PEG)that can catalyze reductive denitration of nitroarenes under ambient physiological conditions.Mechanistic studies support this transformation via the oxidative addition of nitroarenes with Pd(0)and subsequent ligand exchange to form arylpalladium hydride.This one-step reductive denitration via Pd@GDY/DSPE-PEG successfully facilitates the repair of the nitrated proteins arising from endogenic ONOO−and restores their physiological function,including blocking the apoptosis pathway in living cells.Moreover,Pd@GDY/DSPE-PEG was further successfully applied for catalytic denitration to reduce the level of 3-nitrotyrosine residues of proteins located in the mouse brain hippocampus in vivo.This study provides an ideal strategy for designing highly active enzymatic mimicking synthetic catalysts for the regulation of the nitrated protein level and the detoxification of nitrative damage of living cells and tissues.
文摘Performance of simultaneous desulfurization and denitration using the solution of NaClO2 and NaClO as new-style complex absorbent was investigated experimentally in self-designed bench scale bubbling reactor. The effects of main parameters, such as the concentrations of NaClO2 and of NaClO, solution pH and reaction temperature and so on, on removal efficiencies of SO2 and NOx, were examined, then the optimal conditions were established, in which the molar ratio of NaClO to NaClO2 was 1:1, the reaction temperature was 50℃ and the solution pH was 5.5. The removal efficiencies of SO2 and NO under the optimal conditions were 100% and 89.2%, respectively. The mechanism of simultaneous removal based on complex absorbent was proposed by analyzing the removal products and the electrode potentials of related species, namely SO2 and NO are oxi- dized by chlorite anion, hypochlorite, chlorine dioxide and chlorine contained in complex absorbent. In thermodynamic aspect, simultaneous desulfurization and denitration reactions in liquid phase can happen spontaneously and completely, and are all exothermic reactions. It was confirmed by kinetics that for simultaneous desulfurization and denitration, the reaction order and average activation energy of SO2 were 1 and 21.6 kJ·mol^-1, respectively, and those of NO were 1 and 8.2 kJ·mol^-1, respectively.
文摘Sm and Ho were doped in Ce-Mn/TiO_(2)catalyst respectively to enhance its denitration performance at low temperature.X-ray diffraction(XRD),N2adsorption-desorption,X-ray photoelectron spectroscopy(XPS),NH3-temperature programmed desorption(NH3-TPD),H2-temperature programmed reduction(H2-TPR)and in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)techniques were used to analyze the structure and performance of catalysts.The results demonstrate that Ho doping increases the amount of acid sites and improves low temperature redox property of Ce-Mn/TiO_(2),which lead to excellent DeNOxperformance of Ho-Ce-Mn/TiO_(2)in the whole reaction temperature range.Sm doping results in decline of redox property,but it is beneficial to increasing the acid sites of Ce-Mn/TiO_(2).The increased surface acid sites and moderate oxidative ability impart Sm-Ce-Mn/TiO_(2)higher denitration activity and N2selectivity at temperature above 150℃.Lewis acid sites and redox property are the main factors affecting the activity of catalysts.Doping of Ho and Sm both improves sulfur resistance performance of Ce-Mn/TiO_(2)by inhibiting the adsorption of SO_(2)and formation of sulfate.Ce-Mn/TiO_(2)modified by Ho shows better sulfur resistance than that doped with Sm because of its more surface acid sites.
基金Project supported by the National Natural Science Foundation of China(21876168)the Key Projects for Common Key Technology Innovation in Key Industries in Chongqing(cstc2016zdcy-ztzx0020-01)+1 种基金Youth Innovation Promotion Association CAS(2019376)the Graduate Innovation Project of Chongqing Technology and Business University(yjscxx201803-028-22)。
文摘The purpose of this work is to explore the effects of the introduction methods of Ce^4+and Zr^4+on the physicochemical properties,activity,and K tolerance of V2 O5-WO3/TiO2 catalyst for the selective catalytic reduction of NOx by NH3.Four different methods,namely pre-impregnation,post-impregnation,coimpregnation,and co-precipitation,were used to synthesize a series of V2 O5-WO3-TiO2-CeO2-ZrO2 catalysts.The catalysts were characterized by XRD,BET,NH3-TPD,XPS,and H2-TPR techniques.Moreover,the activity and anti-K poisoning performance were tested by an NH3-SCR model reaction.The results show that the introduction of Ce^4+and Zr^4+can improve the catalytic performance of V2O5-WO3/TiO2 catalyst,but the impregnation method cannot enhance the anti-K poisoning performance.Ce^4+and Zr^4+introduced by co-precipitation method can effectively improve the tolerance of K,which is mainly due to the incorporation of Ce^4+and Zr^4+into TiO2 lattice to form a uniform TiO2-CeO2-ZrO2 solid solution,resulting in the optimal surface acidity and redox performance,and reducing the decreases caused by Kpoisoning.Furthermore,based on the best introduction method,we further optimized the molar ratio of Ce^4+/Zr^4+,It is found that the catalyst exhibits the best anti-K poisoning performance when the molar ratio of Ce^4+/Zr^4+is 2:1.
基金supported by the Natural Science Foundation of China (Nos. 21376261, 21173270)the Beijing Natural Science Foundation (2142027)+1 种基金Doctor select Foundation (No. 20130007110007)the National Hi-Tech Research and Development Program (863) of China (No. 2013AA065302)
文摘Selective catalytic reduction technology using NH3 as a reducing agent(NH3-SCR) is an effective control method to remove nitrogen oxides. TiO2-supported vanadium oxide catalysts with different levels of Ce and Sb modification were prepared by an impregnation method and were characterized by X-ray diffractometer(XRD), Brunauer-Emmett-Teller(BET), Transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FT-IR), UV-Vis diffuse reflectance spectroscopy(UV-Vis DRS), Raman and Hydrogen temperature-programmed reduction(H2-TPR). The catalytic activities of V5 CexS by/TiO2 catalysts for denitration were investigated in a fixed bed flow microreactor. The results showed that cerium, vanadium and antimony oxide as the active components were well dispersed on TiO2, and the catalysts exhibited a large number of d-d electronic transitions, which were helpful to strengthen SCR reactivity. The V5 CexS by/TiO2 catalysts exhibited a good low temperature NH3-SCR catalytic activity. In the temperature range of 210 to 400℃, the V5 CexS by/TiO2 catalysts gave NO conversion rates above 90%. For the best V5Ce35Sb2/TiO2 catalyst, at a reaction temperature of 210℃, the NO conversion rate had already reached 90%. The catalysts had different catalytic activity with different Ce loadings. With the increase of Ce loading, the NO conversion rate also increased.
基金Supported by the Interdisciplinary Team Project of Shenyang University of Technology in 2021:Green and Low-carbon(Technology and Evaluation)of Typical Industries of Carbon Peak(2021-70-06)"Double First-class"Construction Project of Liaoning Province in 2020(Scientific Research)(FWDFGD2020041).
文摘Based on the basic principle and mechanism of flue gas denitrification,the commonly used catalysts for flue gas denitrification were introduced firstly,and then the catalytic performance,stability and reaction mechanism of catalysts in the market were analyzed.Different types of catalysts were studied to look for green catalysts with high activity,sulfur resistance,water vapor resistance and other advantages.The mechanism of denitration reaction of green catalysts was discussed,and the laws of formation,propagation and consumption of active species in the reaction process were revealed to provide theoretical basis for optimizing catalyst design and improving reaction conditions.Then the research status and problems of new catalysts for flue gas denitrification were described.Finally,the future development direction of green catalysts for flue gas denitration was discussed to improve the performance and stability of catalysts and meet the performance requirements of denitration catalysts in different industries.
文摘With the vigorous development of China’s iron and steel industry and the introduction of ultra-low emission policies, the emission of pollutants such as SO2 and NOx has received unprecedented attention. At present, the commonly used denitrification methods include selective catalytic reduction (SCR), active coke, etc. As a newly developed denitrification technology, oxidation denitrification is not widely used, and the technical level is mixed, and there might be problems such as yellow smoke, secondary pollution and ozone escape in the practical application. In this paper, problems existing in the denitrification process of sintering flue gas oxidation are analyzed, and a 320 m2 sintering machine is taken as an example. Comparing the denitrification technology of sintering industry, it could be seen that the denitrification technology route of oxidation method has low pollution, low cost and high comprehensive environmental benefits, and has greatly potential development.
基金supported by the Science and Technology Plan Project of Hebei Province of China(16273703D)the Fundamental Research Funds for the Central Universities(2015ZD24,2017XS123)~~
文摘Vanadium-titanium-based catalysts are the most widely used industrial materials for NO_x removal from coal-fired power plants. Owing to their relatively poor low-temperature deNO_x activity, low thermal stability, insufficient Hg^0 oxidation activity, SO_2 oxidation, ammonia slip, and other disadvantages,modifications to traditional vanadium-titanium-based selective catalytic reduction(SCR)catalysts have been attempted by many researchers to promote their relevant performance. This article reviewed the research progress of modified vanadium-titanium-based SCR catalysts from seven aspects, namely,(1) improving low-temperature deNO_x efficiency,(2) enhancing thermal stability,(3) improving Hg^0 oxidation efficiency,(4) oxidizing slip ammonia,(5) reducing SO_2 oxidation,(6) increasing alkali resistance, and(7) others. Their catalytic performance and the influence mechanisms have been discussed in detail. These catalysts were also divided into different categories according to their modified components such as noble metals(e.g., silver, ruthenium), transition metals(e.g., manganese, iron, copper, zirconium, etc.), rare earth metals(e.g., cerium, praseodymium),and other metal chlorides(e.g., calcium chloride, copper chloride) and non-metals(fluorine,sulfur, silicon, nitrogen, etc.). The advantages and disadvantages of these catalysts were summarized.Based on previous studies and the author's point of view, doping the appropriate modified components is beneficial to further improve the overall performance of vanadium-titanium-based SCR catalysts. This has enormous development potential and is a promising way to realize the control of multiple pollutants on the basis of the existing flue gas treatment system.
基金supported by Major Scientific and Technological Project of Bingtuan (No.2018AA002)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R46)
文摘We rationally designed a high performance denitration(De-NOx) catalyst based on a micrometer-sized spherical Mn–Ce–Fe–Ti(CP-SD)catalyst for selective catalytic reduction(SCR). This was prepared by a co-precipitation and spray drying(CP-SD) method. The catalyst was systematically characterized, and its morphological structure and surface properties were identified. Compare with conventional Mn–Ce–Fe–Ti(CP) catalysts, the Mn–Ce–Fe–Ti(CP-SD) catalyst had superior surface-adsorbed oxygen leading to enhanced 'fast NH3-SCR' reaction. The asobtained Mn–Ce–Fe–Ti(CP-SD) catalyst offered excellent NO conversion and N2 selectivity of 100.0% and 84.8% at 250℃, respectively, with a gas hourly space velocity(GHSV) of 40,000 h-1. The porous micro-spherical structure provides a larger surface area and more active sites to adsorb and activate the reaction gases. In addition, the uniform distribution and strong interaction of manganese, iron, cerium, and titanium oxide species improved H2O and SO2 resistance. The results showed that the Mn–Ce–Fe–Ti(CP-SD) catalyst could be used prospectively as a denitration(De-NOx) catalyst.
基金financial supports from the Natural Science Foundation of Hunan Province,China(No.2020JJ4685)the Open Fund for Key Laboratory of Metallurgical Emission Reduction and Resources Utilization of Ministry of Education in Anhui University of Technology,China(No.JKF20-02)+2 种基金the Natural Science Foundation of Hunan Province,China(No.2019JJ40378)the Open Fund for State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control in Wuhan University of Science and Technology,China(No.HB201908)the Scientific Technology Project of Strategic Emerging Industries and Major Achievement Transformation of Hunan Province,China(No.2017GK4010)。
文摘Al_(x)/HKUST-1(x=1/24,1/12,1/6,1/3),one of the bimetallic copper-based organic framework materials,was successfully prepared by the synthetic exchange method and characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),specific surface area(BET),thermogravimetric analysis(TG),infrared spectra(IR),X-ray photoelectron spectroscopy(XPS),and H_(2)-temperature programmed reduction(H_(2)-TPR).The findings indicated that Al_(x)/HKUST-1 maintained the octahedral morphology of its precursor(HKUST-1).The thermal stability and catalytic reduction ability of HKUST-1 skeleton were improved by doping aluminum(Al^(3+)).Al_(1/12)/HKUST-1 showed the best performance among all samples,with a nitric oxide(NO)conversion rate of 100%at 210℃(50℃lower than that of HKUST-1).The valence kind of Al,Cu,and O in Al_(1/12)/HKUST-1 did not change after the catalytic reaction,but the contents of Al,Cu,and O in different forms changed significantly.The catalytic process of the Al_(x)/HKUST-1 followed a Langmuir-Hinshelwood mechanism.
文摘This paper presents a study on the process engineering aspects of relevance to the industrial implementation of ThO2 and (Th, U)O2 mixed oxide (MOX) pellet type fuel manufacturing. The paper in particular focuses on the recycling of thoria based fuel production scrap which is an economically important component in the fuel manufacturing process. The thoria based fuels are envisaged for Advanced Heavy Water Reactor (AHWR) and other reactors important to the Indian Nuclear Power Programme. A process was developed for recycling the chemically clean, off-specification and defective sintered ThO2 and (Th, U)O2 MOX nuclear fuel pellets. ThO2 doesn’t undergo oxidation or reduction and thus, more traditional methods of recycling are impractical. The integrated process was developed by combining three basic approaches of recycling namely mechanical micronisation, air oxidation (for MOX) and microwave dissolution-denitration. A thorough investigation of the influence of several variables as heating method, UO2 content, fluoride and polyvinyl alcohol (PVA) addition during microwave dissolution-denitration was recorded on the product characteristics. The suitability evaluation of the recycled powder for re-fabrication of the fuel was carried out by analyzing the particle size, BET specific surface area, phase using XRD, bulk density and impurities. The physical and chemical properties of recycled powder obtained from the sintered (Th1-y, Uy)O2 (y;0 - 30 wt%) pellets advocate 100% utilisation for fuel re-fabrication. Recycled ThO2 by integrated process showed distinctly high sinterability compared to standard powder evaluated in terms of surface area and particle size.
基金supported by Science and Technology Innovation Talents Program of Bingtuan (No.2019CB025)Major Scientific and Technological Project of Bingtuan (No.2018AA002)Project of Regional Innovation in Bingtuan (No.2021BB005)。
文摘Photo-assisted SCR(PSCR) offers a potential solution for removal of NO at room temperature. MnTiO_(x)as PSCR catalyst exhibits superior performance with NO removal of 100% at the room temperature. Electron paramagnetic resonance(EPR) analysis revealed the presence of numerous oxygen vacancies on MnTiO_(x). Optical carrier density functional theory(DFT) calculations showed that the threedimensional orbital hybridization of Mn and Ti is significantly enhanced under light irradiation. The MnTiO_(x)catalyst exhibited excellent electron–hole separation ability, which can adsorbe NH_(3)and dissociate to form NH_(2)fragments and H atoms. In-situ diffuse reflectance infrared fourier-transform spectroscopy(DRIFTS) indicated that the optical carrier enhanced NH_(3)adsorption on MnTiO_(x), which makes it possess excellent PSCR activity. This work provided an additional strategy to NO removal with PSCR catalysts and showed potential for use in photocatalysis.
基金Supported by General Project of Natural Science Foundation of Liaoning Province in 2019(2019-MS-202)"Double First-Class"Construction Project of Liaoning Province in 2020(Scientific Research)(FWDFGD2020041)。
文摘In this paper,the research status and catalytic mechanism of activated carbon catalysts,molecular sieve catalysts,noble metal catalysts and transition metal oxide catalysts used for NO catalytic oxidation were studied to provide reference for future research.