Rolling bearings are important central components in rotating machines, whose fault diagnosis is crucial in condition-based maintenance to reduce the complexity of different kinds of faults. To classify various rollin...Rolling bearings are important central components in rotating machines, whose fault diagnosis is crucial in condition-based maintenance to reduce the complexity of different kinds of faults. To classify various rolling bearing faults, a prognostic algorithm consisting of four phases was proposed. Since stacked denoising auto-encoder can be filtered, noise of large numbers of mechanical vibration signals was used for deep learning structure to extract the characteristics of the noise. Unsupervised pre-training method, which can greatly simplify the traditional manual extraction approach, was utilized to process the depth of the data automatically. Furthermore, the aggregation layer of stacked denoising auto-encoder(SDA) was proposed to get rid of gradient disappearance in deeper layers of network, mix superficial nodes’ expression with deeper layers, and avoid the insufficient express ability in deeper layers. Principal component analysis(PCA) was adopted to extract different features for classification. According to the experimental data of this method and from the comparison results, the proposed method of rolling bearing fault classification reached 97.02% of correct rate, suggesting a better performance than other algorithms.展开更多
Single nucletide polymorphism(SNP)is an important factor for the study of genetic variation in human families and animal and plant strains.Therefore,it is widely used in the study of population genetics and disease re...Single nucletide polymorphism(SNP)is an important factor for the study of genetic variation in human families and animal and plant strains.Therefore,it is widely used in the study of population genetics and disease related gene.In pharmacogenomics research,identifying the association between SNP site and drug is the key to clinical precision medication,therefore,a predictive model of SNP site and drug association based on denoising variational auto-encoder(DVAE-SVM)is proposed.Firstly,k-mer algorithm is used to construct the initial SNP site feature vector,meanwhile,MACCS molecular fingerprint is introduced to generate the feature vector of the drug module.Then,we use the DVAE to extract the effective features of the initial feature vector of the SNP site.Finally,the effective feature vector of the SNP site and the feature vector of the drug module are fused input to the support vector machines(SVM)to predict the relationship of SNP site and drug module.The results of five-fold cross-validation experiments indicate that the proposed algorithm performs better than random forest(RF)and logistic regression(LR)classification.Further experiments show that compared with the feature extraction algorithms of principal component analysis(PCA),denoising auto-encoder(DAE)and variational auto-encode(VAE),the proposed algorithm has better prediction results.展开更多
In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and trans...In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and transformer models for global feature capture.The performance of Hformer was verified and evaluated based on the AAPM-Mayo Clinic LDCT Grand Challenge Dataset.Compared with the former representative state-of-the-art(SOTA)model designs under different architectures,Hformer achieved optimal metrics without requiring a large number of learning parameters,with metrics of33.4405 PSNR,8.6956 RMSE,and 0.9163 SSIM.The experiments demonstrated designed Hformer is a SOTA model for noise suppression,structure preservation,and lesion detection.展开更多
第五代(fifth-generation,5G)移动通信技术的兴起,推动了物联网(Internet of things,IoT)的发展。然而,随着物联网数据传输量的爆发式增长,频谱资源短缺问题越来越严重。频谱感知技术极大的提高了物联网频谱利用率。但是,物联网移动通...第五代(fifth-generation,5G)移动通信技术的兴起,推动了物联网(Internet of things,IoT)的发展。然而,随着物联网数据传输量的爆发式增长,频谱资源短缺问题越来越严重。频谱感知技术极大的提高了物联网频谱利用率。但是,物联网移动通信环境的复杂性高以及信号易畸变的特性,对现有的频谱感知算法提出了重大挑战。因此,提出了一种融合去噪自编码器(denoising autoencoder,DAE)和改进长短时记忆(long short term memory,LSTM)神经网络的智能频谱感知算法。DAE通过编码和解码过程挖掘移动信号的底层结构特征,改进的LSTM频谱感知分类器模型结合过去时刻信息特征对时序信号序列进行分类。与支持向量机(support vector machine,SVM)、循环神经网络(recurrent neural network,RNN)、LeNet5、学习矢量量化(learning vector quantization,LVQ)和Elman算法相比,该算法的感知性能提高了45%。展开更多
Time series analysis is a key technology for medical diagnosis,weather forecasting and financial prediction systems.However,missing data frequently occur during data recording,posing a great challenge to data mining t...Time series analysis is a key technology for medical diagnosis,weather forecasting and financial prediction systems.However,missing data frequently occur during data recording,posing a great challenge to data mining tasks.In this study,we propose a novel time series data representation-based denoising autoencoder(DAE)for the reconstruction of missing values.Two data representation methods,namely,recurrence plot(RP)and Gramian angular field(GAF),are used to transform the raw time series to a 2D matrix for establishing the temporal correlations between different time intervals and extracting the structural patterns from the time series.Then an improved DAE is proposed to reconstruct the missing values from the 2D representation of time series.A comprehensive comparison is conducted amongst the different representations on standard datasets.Results show that the 2D representations have a lower reconstruction error than the raw time series,and the RP representation provides the best outcome.This work provides useful insights into the better reconstruction of missing values in time series analysis to considerably improve the reliability of timevarying system.展开更多
针对利用卷积神经网络进行辐射源信号识别过程中时间复杂度高的问题进行研究,提出一种基于降噪自编码器和卷积神经网络结合的算法。首先对雷达辐射源信号进行短时傅里叶变换,获取时频图像;然后对图像进行灰度和阈值二值化处理,将处理后...针对利用卷积神经网络进行辐射源信号识别过程中时间复杂度高的问题进行研究,提出一种基于降噪自编码器和卷积神经网络结合的算法。首先对雷达辐射源信号进行短时傅里叶变换,获取时频图像;然后对图像进行灰度和阈值二值化处理,将处理后的图像向量化操作输入到降噪自编码器中,提取降噪自编码器隐藏层特征数据完成降维处理,再重构成图片矩阵输入到卷积神经网络中,利用常用的softmax分类器进行分类识别。通过仿真表明,添加降噪自编码器降维处理后的模型相比原模型,时间复杂度大幅度下降;在SNR=-6 d B时,识别效果能达到80%以上;与利用传统降维方式性能相比,识别效果明显提高。展开更多
针对额外提取数据特征的方法需要花费大量时间和人力成本、轴承退化的线性预测精度低等问题,以及时序数据具有时间依赖关系的特点,提出了端到端的结合长短时记忆网络的深度变分自编码器模型(E2E Deep VAE-LSTM)用于轴承退化预测。通过改...针对额外提取数据特征的方法需要花费大量时间和人力成本、轴承退化的线性预测精度低等问题,以及时序数据具有时间依赖关系的特点,提出了端到端的结合长短时记忆网络的深度变分自编码器模型(E2E Deep VAE-LSTM)用于轴承退化预测。通过改进VAE的结构,并结合LSTM,该模型可以在含有异常值的数据集上直接进行训练和预测;使用系统重建误差表征轴承退化趋势,实现了轴承退化的非线性预测。在三个真实数据集上的实验结果表明,E2E Deep VAE-LSTM模型可以得到满意的预测结果,预测精度均高于现有的几种AE类模型及其他几种方法,且具有良好的泛化能力和抗过拟合能力。展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.51704138)
文摘Rolling bearings are important central components in rotating machines, whose fault diagnosis is crucial in condition-based maintenance to reduce the complexity of different kinds of faults. To classify various rolling bearing faults, a prognostic algorithm consisting of four phases was proposed. Since stacked denoising auto-encoder can be filtered, noise of large numbers of mechanical vibration signals was used for deep learning structure to extract the characteristics of the noise. Unsupervised pre-training method, which can greatly simplify the traditional manual extraction approach, was utilized to process the depth of the data automatically. Furthermore, the aggregation layer of stacked denoising auto-encoder(SDA) was proposed to get rid of gradient disappearance in deeper layers of network, mix superficial nodes’ expression with deeper layers, and avoid the insufficient express ability in deeper layers. Principal component analysis(PCA) was adopted to extract different features for classification. According to the experimental data of this method and from the comparison results, the proposed method of rolling bearing fault classification reached 97.02% of correct rate, suggesting a better performance than other algorithms.
基金Lanzhou Talent Innovation and Entrepreneurship Project(No.2020-RC-14)。
文摘Single nucletide polymorphism(SNP)is an important factor for the study of genetic variation in human families and animal and plant strains.Therefore,it is widely used in the study of population genetics and disease related gene.In pharmacogenomics research,identifying the association between SNP site and drug is the key to clinical precision medication,therefore,a predictive model of SNP site and drug association based on denoising variational auto-encoder(DVAE-SVM)is proposed.Firstly,k-mer algorithm is used to construct the initial SNP site feature vector,meanwhile,MACCS molecular fingerprint is introduced to generate the feature vector of the drug module.Then,we use the DVAE to extract the effective features of the initial feature vector of the SNP site.Finally,the effective feature vector of the SNP site and the feature vector of the drug module are fused input to the support vector machines(SVM)to predict the relationship of SNP site and drug module.The results of five-fold cross-validation experiments indicate that the proposed algorithm performs better than random forest(RF)and logistic regression(LR)classification.Further experiments show that compared with the feature extraction algorithms of principal component analysis(PCA),denoising auto-encoder(DAE)and variational auto-encode(VAE),the proposed algorithm has better prediction results.
基金supported by the National Natural Science Foundation of China(Nos.11975292,12222512)the CAS"Light of West Chin"Program+1 种基金the CAS Pioneer Hundred Talent Programthe Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)。
文摘In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and transformer models for global feature capture.The performance of Hformer was verified and evaluated based on the AAPM-Mayo Clinic LDCT Grand Challenge Dataset.Compared with the former representative state-of-the-art(SOTA)model designs under different architectures,Hformer achieved optimal metrics without requiring a large number of learning parameters,with metrics of33.4405 PSNR,8.6956 RMSE,and 0.9163 SSIM.The experiments demonstrated designed Hformer is a SOTA model for noise suppression,structure preservation,and lesion detection.
文摘第五代(fifth-generation,5G)移动通信技术的兴起,推动了物联网(Internet of things,IoT)的发展。然而,随着物联网数据传输量的爆发式增长,频谱资源短缺问题越来越严重。频谱感知技术极大的提高了物联网频谱利用率。但是,物联网移动通信环境的复杂性高以及信号易畸变的特性,对现有的频谱感知算法提出了重大挑战。因此,提出了一种融合去噪自编码器(denoising autoencoder,DAE)和改进长短时记忆(long short term memory,LSTM)神经网络的智能频谱感知算法。DAE通过编码和解码过程挖掘移动信号的底层结构特征,改进的LSTM频谱感知分类器模型结合过去时刻信息特征对时序信号序列进行分类。与支持向量机(support vector machine,SVM)、循环神经网络(recurrent neural network,RNN)、LeNet5、学习矢量量化(learning vector quantization,LVQ)和Elman算法相比,该算法的感知性能提高了45%。
文摘Time series analysis is a key technology for medical diagnosis,weather forecasting and financial prediction systems.However,missing data frequently occur during data recording,posing a great challenge to data mining tasks.In this study,we propose a novel time series data representation-based denoising autoencoder(DAE)for the reconstruction of missing values.Two data representation methods,namely,recurrence plot(RP)and Gramian angular field(GAF),are used to transform the raw time series to a 2D matrix for establishing the temporal correlations between different time intervals and extracting the structural patterns from the time series.Then an improved DAE is proposed to reconstruct the missing values from the 2D representation of time series.A comprehensive comparison is conducted amongst the different representations on standard datasets.Results show that the 2D representations have a lower reconstruction error than the raw time series,and the RP representation provides the best outcome.This work provides useful insights into the better reconstruction of missing values in time series analysis to considerably improve the reliability of timevarying system.
文摘针对利用卷积神经网络进行辐射源信号识别过程中时间复杂度高的问题进行研究,提出一种基于降噪自编码器和卷积神经网络结合的算法。首先对雷达辐射源信号进行短时傅里叶变换,获取时频图像;然后对图像进行灰度和阈值二值化处理,将处理后的图像向量化操作输入到降噪自编码器中,提取降噪自编码器隐藏层特征数据完成降维处理,再重构成图片矩阵输入到卷积神经网络中,利用常用的softmax分类器进行分类识别。通过仿真表明,添加降噪自编码器降维处理后的模型相比原模型,时间复杂度大幅度下降;在SNR=-6 d B时,识别效果能达到80%以上;与利用传统降维方式性能相比,识别效果明显提高。
文摘针对额外提取数据特征的方法需要花费大量时间和人力成本、轴承退化的线性预测精度低等问题,以及时序数据具有时间依赖关系的特点,提出了端到端的结合长短时记忆网络的深度变分自编码器模型(E2E Deep VAE-LSTM)用于轴承退化预测。通过改进VAE的结构,并结合LSTM,该模型可以在含有异常值的数据集上直接进行训练和预测;使用系统重建误差表征轴承退化趋势,实现了轴承退化的非线性预测。在三个真实数据集上的实验结果表明,E2E Deep VAE-LSTM模型可以得到满意的预测结果,预测精度均高于现有的几种AE类模型及其他几种方法,且具有良好的泛化能力和抗过拟合能力。