期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Enhancement of refresh time in quasi-nonvolatile memory by the density of states engineering 被引量:1
1
作者 Zhaowu Tang Chunsen Liu +6 位作者 Senfeng Zeng Xiaohe Huang Liwei Liu Jiayi Li Yugang Jiang David Wei Zhang Peng Zhou 《Journal of Semiconductors》 EI CAS CSCD 2021年第2期100-107,共8页
The recently reported quasi-nonvolatile memory based on semi-floating gate architecture has attracted extensive attention thanks to its potential to bridge the large gap between volatile and nonvolatile memory.However... The recently reported quasi-nonvolatile memory based on semi-floating gate architecture has attracted extensive attention thanks to its potential to bridge the large gap between volatile and nonvolatile memory.However,the further extension of the refresh time in quasi-nonvolatile memory is limited by the charge leakage through the p-n junction.Here,based on the density of states engineered van der Waals heterostructures,the leakage of electrons from the floating gate to the channel is greatly suppressed.As a result,the refresh time is effectively extended to more than 100 s,which is the longest among all previously reported quasi-nonvolatile memories.This work provides a new idea to enhance the refresh time of quasi-nonvolatile memory by the density of states engineering and demonstrates great application potential for high-speed and low-power memory technology. 展开更多
关键词 quasi-nonvolatile memory refresh time density of states engineering
下载PDF
Effect of Temperature and Band Nonparabolicity on Density of States of Two Dimensional Electron Gas
2
作者 G. Gulyamov P. J. Baymatov B. T. Abdulazizov 《Journal of Applied Mathematics and Physics》 2016年第2期272-278,共7页
The analysis of the density of states for electrons in single quantum well, the conduction band nonparabolicity take is account. It is shown that the degree of conduction band nonparabolicity pronounces depending on t... The analysis of the density of states for electrons in single quantum well, the conduction band nonparabolicity take is account. It is shown that the degree of conduction band nonparabolicity pronounces depending on the energy density of states. With increasing temperature, a step change in the density of states smoothes and at high temperatures is completely blurred. Nonparabolicity dispersion law manifests itself in a wide range of temperatures. Calculations are carried out for the example of the quantum wells in InAs and InSb. 展开更多
关键词 Quantum Well density of states Band Nonparabolicity Thermal Broadening
下载PDF
Discrete vortex bound states with a van Hove singularity in the vicinity of the Fermi level 被引量:1
3
作者 方德龙 崔云康 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期644-647,共4页
A theoretical study on discrete vortex bound states is carried out near a vortex core in the presence of a van Hove singularity(VHS) near the Fermi level by solving Bogoliubov–de Gennes(Bd G) equations. When the VHS ... A theoretical study on discrete vortex bound states is carried out near a vortex core in the presence of a van Hove singularity(VHS) near the Fermi level by solving Bogoliubov–de Gennes(Bd G) equations. When the VHS lies exactly at the Fermi level and also at the middle of the band, a zero-energy state and other higher-energy states whose energy ratios follow integer numbers emerge. These discrete vortex bound state peaks undergo a splitting behavior when the VHS or Fermi level moves away from the middle of the band. Such splitting behavior will eventually lead to a new arrangement of quantized vortex core states whose energy ratios follow half-odd-integer numbers. 展开更多
关键词 vortex bound states van Hove singularity Fermi level density of states
下载PDF
The Density of Energy States for Nonparabolic Dispersion Law in a Strong Magnetic Field
4
作者 U. I. Erkaboev 《Journal of Applied Mathematics and Physics》 2016年第11期2113-2116,共4页
For nonparabolic dispersion law is determined by the density of the energy states (Ns) in a quantizing magnetic field. The effect of temperature on the expansion of the Lan-dau levels of electrons semiconductors with ... For nonparabolic dispersion law is determined by the density of the energy states (Ns) in a quantizing magnetic field. The effect of temperature on the expansion of the Lan-dau levels of electrons semiconductors with the nonquadratic dispersion is studied. The density of states at low temperatures is calculated from data on high-tem- perature Ns. 展开更多
关键词 Quantizing Magnetic Field The Landau Levels The Model Kane Nonparabolic Zone The density of states
下载PDF
Novel Understanding of Electron States Architecture and Its Dimensionality in Semiconductors 被引量:3
5
作者 Xiaomin Ren 《Optics and Photonics Journal》 2013年第2期322-330,共9页
Some important insights into the electron-states-architecture (ESA) and its dimensionality (from 3 to 0) in a semiconductor (or generally crystalline) material are obtained. The self-consistency of the set of density ... Some important insights into the electron-states-architecture (ESA) and its dimensionality (from 3 to 0) in a semiconductor (or generally crystalline) material are obtained. The self-consistency of the set of density of states (DOS) expressions with different dimensionalities is remediated through the clarification and rearrangement of the wave-function boundary conditions for working out the eigenvalues in the wave vector space. The actually too roughly observed and theoretically unpredicted critical points for the dimensionality transitions referring to the integer ones are revealed upon an unusual assumption of the intrinsic energy-level dispersion (ELD). The ELD based quantitative physical model had been established on an immediate instinct at the very beginning and has been properly modified afterwards. The uncertainty regarding the relationship between the de Broglie wavelength of electrons and the dimensionality transitions, seeming somewhat mysterious before, is consequentially eliminated. The effect of the material dimensions on the ELD width is also predicted and has been included in the model. The continuous evolution of the ESA dimensionality is convincingly and comprehensively interpreted and thus the area of the fractional ESA dimensionalities is opened. Another new assumption of the spatial extension shrinkage (SES) closely related to the ELD has also been made and thus the understanding of the behavior of an electron or, in a general sense, a particle has become more comprehensive. This work would manifest itself a new basis for further development of nanoheterostructures (or low dimensional heterostructures including the quantum wells, quantum wires, quantum dots and especially the hetero-dimensional structures). Expected should also be the possible inventions of some novel electronic and optoelectronic devices. More basically, it leads to a new quantum mechanical picture, the essential modifications of Schr&ouml;dinger equation and Newtonian equation that give rise to a full cosmic-scope picture, and a super-low-speed relativity assumption. 展开更多
关键词 Energy-level Dispersion Spatial Extension Shrinkage Electron-states-architecture density of states Di-mensionality Quantum Wells Wires and Dots Schr?dinger Equation Newtonian Equation RELATIVITY
下载PDF
Vortex bound states influenced by the Fermi surface anisotropy 被引量:1
6
作者 方德龙 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期497-501,共5页
The spatial distribution of vortex bound states is often anisotropic,which is correlated with the underlying property of materials.In this work,we examine the effects of Fermi surface anisotropy on vortex bound states... The spatial distribution of vortex bound states is often anisotropic,which is correlated with the underlying property of materials.In this work,we examine the effects of Fermi surface anisotropy on vortex bound states.The large-scale calculation of vortex bound states is introduced in the presence of fourfold or twofold Fermi surface by solving the Bogoliubov–de Gennes(BdG)equations.Two kinds of quasiparticles’behaviors can be extracted from the local density of states(LDOS)around a vortex.The angle-dependent quasiparticles will move from high energy to low energy when the angle varies from curvature maxima to minima of the Fermi surface,while the angle-independent quasiparticles tend to stay at a relatively higher energy.In addition,the weight of angle-dependent quasiparticles can be enhanced by the increasing anisotropy degree of Fermi surface. 展开更多
关键词 VORTEX ANISOTROPY Fermi surface local density of states
下载PDF
Broadening Thermal Energy Levels and Density States Quasi One-Dimensional Electron Gas
7
作者 P. J. Baymatov A. G. Gulyamov +1 位作者 A. B. Davlatov B. B. Uzakov 《Journal of Applied Mathematics and Physics》 2016年第4期706-710,共5页
We have investigated the energy states of a one-dimensional electron gas and analyzed the temperature dependence of the density of states. It is shown that with increasing temperature due to thermal broadening of quan... We have investigated the energy states of a one-dimensional electron gas and analyzed the temperature dependence of the density of states. It is shown that with increasing temperature due to thermal broadening of quantum, levels are blurred. 展开更多
关键词 Quasi One-Dimensional Electron Gas density of states Thermal Broadening
下载PDF
Sub-nano Layers of Li, Be, and Al on the Si(100) Surface: Electronic Structure and Silicide Formation
8
作者 Victor Zavodinsky Oga Gorkusha 《Semiconductor Science and Information Devices》 2023年第1期11-17,共7页
Within the framework of the density functional theory and the pseudopotential method,the electronic structure calculations of the“metal-Si(100)”systems with Li,Be and Al as metal coverings of one to four monolayers(... Within the framework of the density functional theory and the pseudopotential method,the electronic structure calculations of the“metal-Si(100)”systems with Li,Be and Al as metal coverings of one to four monolayers(ML)thickness,were carried out.Calculations showed that band gaps of 1.02 eV,0.98 eV and 0.5 eV,respectively,appear in the densities of electronic states when the thickness of Li,Be and Al coverings is one ML.These gaps disappear with increasing thickness of the metal layers:first in the Li-Si system(for two ML),then in the Al-Si system(for three ML)and then in the Be-Si system(for four ML).This behavior of the band gap can be explained by the passivation of the substrate surface states and the peculiarities of the electronic structure of the adsorbed metals.In common the results can be interpreted as describing the possibility of the formation of a two-dimensional silicide with semiconducting properties in Li-Si(100),Be-Si(100)and Al-Si(100)systems. 展开更多
关键词 Kohn-Sham method PSEUDOPOTENTIALS Si(100)surface Sub-nano metal layers density of states Two-dimensional silicides Semiconducting properties
下载PDF
Comparative study of Mo2Ga2C with superconducting MAX phase Mo2GaC: First-principles calculations 被引量:4
9
作者 M A Ali M R Khatun +1 位作者 NJahan M M Hossain 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期297-302,共6页
The structural, electronic, optical and thermodynamic properties of Mo_2Ga_2C are investigated using density functional theory(DFT) within the generalized gradient approximation(GGA). The optimized crystal structure i... The structural, electronic, optical and thermodynamic properties of Mo_2Ga_2C are investigated using density functional theory(DFT) within the generalized gradient approximation(GGA). The optimized crystal structure is obtained and the lattice parameters are compared with available experimental data. The electronic density of states(DOS) is calculated and analyzed. The metallic behavior for the compound is confirmed and the value of DOS at Fermi level is 4.2 states per unit cell per e V. Technologically important optical parameters(e.g., dielectric function, refractive index, absorption coefficient, photo conductivity, reflectivity, and loss function) are calculated for the first time. The study of dielectric constant(ε1) indicates the Drude-like behavior. The absorption and conductivity spectra suggest that the compound is metallic.The reflectance spectrum shows that this compound has the potential to be used as a solar reflector. The thermodynamic properties such as the temperature and pressure dependent bulk modulus, Debye temperature, specific heats, and thermal expansion coefficient of Mo_2Ga_2C MAX phase are derived from the quasi-harmonic Debye model with phononic effect also for the first time. Analysis of T c expression using available parameter values(DOS, Debye temperature, atomic mass,etc.) suggests that the compound is less likely to be superconductor. 展开更多
关键词 first-principles calculations density of states(DOS) optical properties thermodynamic properties
下载PDF
First-principles calculations of structural,elastic and electronic properties of(TaNb)0.67(HfZrTi)0.33 high-entropy alloy under high pressure 被引量:3
10
作者 Zhi-sheng Nong Hao-yu Wang Jing-chuan Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第10期1405-1414,共10页
To clarify the effect of pressure on a(TaNb)0.67(HfZrTi)0.33 alloy composed of a solid solution with a single body-centered-cubic crystal structure,we used first-principles calculations to theoretically investigate th... To clarify the effect of pressure on a(TaNb)0.67(HfZrTi)0.33 alloy composed of a solid solution with a single body-centered-cubic crystal structure,we used first-principles calculations to theoretically investigate the structural,elastic,and electronic properties of this alloy at different pressures.The results show that the calculated equilibrium lattice parameters are consistent with the experimental results,and that the normalized structural parameters of lattice constants and volume decrease whereas the total enthalpy differenceΔE and elastic constants increase with increasing pressure.The(TaNb)0.67(HfZrTi)0.33 alloy exhibits mechanical stability at high pressures lower than 400 GPa.At high pressure,the bulk modulus B shows larger values than the shear modulus G,and the alloy exhibits an obvious anisotropic feature at pressures ranging from 30 to 70 GPa.Our analysis of the electronic structures reveals that the atomic orbitals are occupied by the electrons change due to the compression of the crystal lattices under the effect of high pressure,which results in a decrease in the total density of states and a wider electron energy level.This factor is favorable for zero resistance. 展开更多
关键词 first-principles calculations elastic property electronic structure density of states high-entropy alloys high pressure
下载PDF
Understanding Chemical Reactivity in Extended Systems:Exploring Models of Chemical Softness in Carbon Nanotubes
11
作者 CáRDENAS Carlos MUNOZ Macarena +3 位作者 CONTRERAS Julia AYERS Paul W. GóMEZ Tatiana FUENTEALBA Patricio 《物理化学学报》 SCIE CAS CSCD 北大核心 2018年第6期631-638,共8页
Chemical reactivity towards electron transfer is captured by the Fukui function.However,this is not well defined when the system or its ions have degenerate or pseudo-degenerate ground states.In such a case,the first-... Chemical reactivity towards electron transfer is captured by the Fukui function.However,this is not well defined when the system or its ions have degenerate or pseudo-degenerate ground states.In such a case,the first-order chemical response is not independent of the perturbation and the correct response has to be computed using the mathematical formalism of perturbation theory for degenerate states.Spatialpseudo-degeneracy is ubiquitous in nanostructures with high symmetry and totally extended systems.Given the size of these systems,using degenerate-state perturbation theory is impractical because it requires the calculation of many excited states.Here we present an alternative to compute the chemical response of extended systems using models of local softness in terms of the local density of states.The local softness is approximately equal to the density of states at the Fermi level.However,such approximation leaves out the contribution of inner states.In order to include and weight the contribution of the states around the Fermi level,a model inspired by the long-range behavior of the local softness is presented.Single wall capped carbon nanotubes(SWCCNT) illustrate the limitation of the frontier orbital theory in extended systems.Thus,we have used a C360 SWCCNT to test the proposed model and how it compares with available models based on the local density of states.Interestingly,a simple Hü ckel approximation captures the main features of chemical response of these systems.Our results suggest that density-of-states models of the softness along simple tight binding Hamiltonians could be used to explore the chemical reactivity of more complex system,such a surfaces and nanoparticles. 展开更多
关键词 Local softness Fukui function REACTIVITY Carbon nanotubes density of states
下载PDF
Investigation of electronic,elastic,and optical properties of topological electride Ca3Pb via first-principles calculations
12
作者 孙畅 曹新宇 +5 位作者 王西惠 邱潇乐 方铮辉 袁宇杰 刘凯 张晓 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期583-588,共6页
Electrides are unique materials with the anionic electrons confined to the interstitial sites,expecting important applications in various areas.In this work,the electronic structure and detailed physical properties of... Electrides are unique materials with the anionic electrons confined to the interstitial sites,expecting important applications in various areas.In this work,the electronic structure and detailed physical properties of topological electride Ca_(3)Pb are studied theoretically.By comparing the crystal structures and band structures of Ca_(3)Pb and Ca_(3)PbO,we find that after removing O^(2-)ions from Ca_(3)PbO,the remaining electrons are confined in the vacancies of the Ca6 octahedra centers,playing the role as anions and forming an additional energy band compared with that of Ca_(3)Pb.These interstitial electrons partially result in the low work function of Ca_(3)Pb.Moreover,the calculated mechanic properties imply that Ca_(3)Pb has a strong brittleness.In addition,the dielectric functions and optical properties of Ca_(3)Pb are also analyzed. 展开更多
关键词 density functional theory(DFT) density of states(DOS) work function elastic constant
下载PDF
First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
13
作者 史佳 王蕾 顾强 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期419-425,共7页
Although tuning band structure of optoelectronic semiconductor-based materials by means of doping single defect is an important approach for potential photocatalysis application,C-doping or oxygen vacancy(Vo)as a sing... Although tuning band structure of optoelectronic semiconductor-based materials by means of doping single defect is an important approach for potential photocatalysis application,C-doping or oxygen vacancy(Vo)as a single defect in ZnO still has limitations for photocatalytic activity.Meanwhile,the influence of co-existence of various defects in ZnO still lacks sufficient studies.Therefore,we investigate the photocatalytic properties of ZnOx C0.0625(x=0.9375,0.875,0.8125),confirming that the co-effect of various defects has a greater enhancement for photocatalytic activity driven by visible-light than the single defect in ZnO.To clarify the underlying mechanism of co-existence of various defects in ZnO,we perform systematically the electronic properties calculations using density functional theory.It is found that the coeffect of C-doping and Vo in ZnO can achieve a more controllable band gap than doping solely in ZnO.Moreover,the impact of the effective masses of ZnO_(x)C_(0.0625)(x=0.9375,0.875,0.8125)is also taken into account.In comparison with heavy Vo concentrations,the light Vo concentration(x=0.875)as the optimal component together with C-doping in ZnO,can significantly improve the visible-light absorption and benefit photocatalytic activity. 展开更多
关键词 first-principles theory electron density of states and band structure of crystalline solids Ⅲ-ⅤandⅡ-Ⅵsemiconductors
下载PDF
Theoretical Models of Highly Magnetic White Dwarf Stars with Non-Polytropic Equation of State
14
作者 Hridaya Shah Kunnat Sebastian 《Journal of Modern Physics》 2020年第9期1466-1491,共26页
Super-massive white dwarf (WD) stars in the mass range 2.4 - 2.8 solar masses are believed to be the progenitors of “super-luminous” Type Ia supernovae according to a hypothesis proposed by some researchers. They th... Super-massive white dwarf (WD) stars in the mass range 2.4 - 2.8 solar masses are believed to be the progenitors of “super-luminous” Type Ia supernovae according to a hypothesis proposed by some researchers. They theorize such a higher mass of the WD due to the presence of a very strong magnetic field inside it. We revisit their first work on magnetic WDs (MWDs) and present our theoretical results that are very different from theirs. The main reason for this difference is in the use of the equation of state (EoS) to make stellar models of MWDs. An electron gas in a magnetic field is Landau quantized and hence, the resulting EoS becomes non-polytropic. By constructing models of MWDs using such an EoS, we highlight that a strong magnetic field inside a WD would make the star super-massive. We have found that our stellar models do indeed fall in the mass range given above. Moreover, we are also able to address an observational finding that the mean mass of MWDs are almost double that of non-magnetic WDs. Magnetic field changes the momentum-space of the electrons which in turn changes their density of states (DOS), and that in turn changes the EoS of matter inside the star. By correlating the magnetic DOS with the non-polytropic EoS, we were also able to find a physical reason behind our theoretical result of super-massive WDs with strong magnetic fields. In order to construct these models, we have considered different equations of state with at most three Landau levels occupied and have plotted our results as mass-radius relations for a particular chosen value of maximum Fermi energy. Our results also show that a multiple Landau-level system of electrons leads to such an EoS that gives multiple branches in the mass-radius relations, and that the super-massive MWDs are obtained when the Landau-level occupancy is limited to just one level. Finally, our theoretical results can be explained solely on the basis of quantum and statistical mechanics that warrant no assumptions regarding stars. 展开更多
关键词 White Dwarf Star Magnetic Field Landau Levels Equation of State density of states
下载PDF
Accurate Ground State Electronic and Related Properties of Hexagonal Boron Nitride (h-BN)
15
作者 Y. Malozovsky C. Bamba +2 位作者 A. Stewart L. Franklin D. Bagayoko 《Journal of Modern Physics》 2020年第6期928-943,共16页
We present an <em>ab-initio</em>, self-consistent density functional theory (DFT) description of ground state electronic and related properties of hexagonal boron nitride (h-BN). We used a local density ap... We present an <em>ab-initio</em>, self-consistent density functional theory (DFT) description of ground state electronic and related properties of hexagonal boron nitride (h-BN). We used a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO) formalism. We rigorously implemented the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). The method ensures a generalized minimization of the energy that is far beyond what can be obtained with self-consistency iterations using a single basis set. The method leads to the ground state of the material, in a verifiable manner, without employing over-complete basis sets. We report the ground state band structure, band gap, total and partial densities of states, and electron and hole effective masses of hexagonal boron nitride (h-BN). Our calculated, indirect band gap of 4.37 eV, obtained with room temperature experimental lattice constants of <em>a</em> = 2.504 <span style="white-space:nowrap;">&Aring;</span> and <em>c </em>= 6.661 <span style="white-space:nowrap;">&Aring;</span>, is in agreement with the measured value of 4.3 eV. The valence band maximum is slightly to the left of the K point, while the conduction band minimum is at the M point. Our calculated, total width of the valence and total and partial densities of states are in agreement with corresponding, experimental findings. 展开更多
关键词 density Functional Theory Band Gap density and Partial density of states Electron and Hole Effective Masses
下载PDF
A Study by Ab-Initio Calculation of Structural and Electronic Properties of Semiconductor Nanostructures Based on ZnSe
16
作者 A. Rachidi E. H. Atmani +1 位作者 N. Fazouan M. Boujnah 《Materials Sciences and Applications》 2016年第9期562-573,共13页
Our calculations are based on the modeling technique and simulation Ab-Initio that appeals to the Density Functional Theory (DFT) relying on the Full-Potential Linearized Augmented Plane Waves (FP-LAPW) method that re... Our calculations are based on the modeling technique and simulation Ab-Initio that appeals to the Density Functional Theory (DFT) relying on the Full-Potential Linearized Augmented Plane Waves (FP-LAPW) method that requires a calculation process using approximations such as Local Density (LDA) and Generalized Gradient (GGA) developed in the modelling software of nanostructures WIEN2k. The optimal structure of the binary semiconductor ZnSe crystallizing in the complex phase of Zinc Blende (B3) was determined by studying the variation of energy depending on the volume of the elementary cell. Then the electronic properties of the optimized state were analyzed such as the gap energy, the total density of states (TDOS), the partial density of states (PDOS) and the repartition of the electronic charge density. The obtained results were successful compared with other theoretical and experimental values reported in literature. 展开更多
关键词 ZNSE Ab-Initio Calculations density Functional Theory Band Gap Energy density of states Electronic Charge density
下载PDF
Low-frequency hybridized excess vibrations of two-dimensional glasses
17
作者 付立存 郑一鸣 王利近 《Chinese Physics B》 SCIE EI CAS 2024年第5期550-555,共6页
One hallmark of glasses is the existence of excess vibrational modes at low frequenciesωbeyond Debye’s prediction.Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight i... One hallmark of glasses is the existence of excess vibrational modes at low frequenciesωbeyond Debye’s prediction.Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight into the anomalous mechanical and thermodynamic properties of glasses.However,there is still intensive debate as to the frequency dependence of the population of low-frequency excess vibrations.In particular,excess modes could hybridize with phonon-like modes and the density of hybridized excess modes has been reported to follow D_(exc)(ω)~ω^(2)in 2D glasses with an inverse power law potential.Yet,the universality of the quadratic scaling remains unknown,since recent work suggested that interaction potentials could influence the scaling of the vibrational spectrum.Here,we extend the universality of the quadratic scaling for hybridized excess modes in 2D to glasses with potentials ranging from the purely repulsive soft-core interaction to the hard-core one with both repulsion and attraction as well as to glasses with significant differences in density or interparticle repulsion.Moreover,we observe that the number of hybridized excess modes exhibits a decrease in glasses with higher density or steeper interparticle repulsion,which is accompanied by a suppression of the strength of the sound attenuation.Our results indicate that the density bears some resemblance to the repulsive steepness of the interaction in influencing low-frequency properties. 展开更多
关键词 density of states vibrational modes sound attenuation two-dimensional glasses
下载PDF
Regulating the d band in WS_(2)@NC hierarchical nanospheres for efficient lithium polysulfide conversion in lithium-sulfur batteries 被引量:2
18
作者 Jintao Liu Shuhao Xiaoa +5 位作者 Le Chang Long Lai Rui Wu Yong Xiang Xingquan Liu Jun Song Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期343-352,共10页
The performance of lithium-sulfur batteries is deteriorated by the inferior conductivity of sulfur,the shuttle effect of lithium polysulfides(LiPSs),sluggish redox kinetics of polysulfide intermediates and serious vol... The performance of lithium-sulfur batteries is deteriorated by the inferior conductivity of sulfur,the shuttle effect of lithium polysulfides(LiPSs),sluggish redox kinetics of polysulfide intermediates and serious volumetric expansion of sulfur.To overcome these challenges,we report a versatile route to prepare multi-functional nanocomposites with tuable hierarchical structure via ammonium hydroxide(NH_(3)·H_(2) O)induced self-assembly.The versatility of the system has been demonstrated that the organization of the hierarchical structure can be regulated by adding different amounts of NH_(3)·H_(2) O,and WS_(2) and Co_(9)S_(8) with nitrogen-doped carbon coating(denoted as WS_(2)@NC and Co_(9)S_(8)@NC)can be prepared by adding different precursor salts.When the as-prepared materials are applied for Li-S batteries,the WS_(2)@NC composite exhibits a reversible capacity of 1107.4 mAh g^(-1) at 0.1 C after 500 cycles and even 728.9 mAh g^(-1) at2 C for 1000 cycles,which is significantly better than the Co_(9)S_(8) counterpart and other reported WS_(2) sulfur hosts.Experimentally,the advantageous performance of WS_(2) could be attributed to its higher surface area and total pore volume,giving rise to the easier access to electrolyte and better ability to buffer the volume change during the charge/discharge process.Theoretically,the density function theory(DFT)calculation reveals that the as-prepared WS_(2) has a higher binding energy towards LiPSs as well as a lower energy barrier for Li^(+)diffusion on the surface than Co_(9)S_(8).More significantly,the density of states(DOS)analysis further confirms that the superior performance is mainly ascribed to the more prominent shifting and the more charge compensation from d band of W than Co,which increase electronic concentration and give more hybridization of d-p orbitals in the Fermi level of the adsorbed Li2 S4 to accelerate the lithium polysulfide interfacial redox and conversion dynamics in WS_(2).By proposing this mechanism,this work sheds new light on the understanding of catalytic conversion of lithium polysulfides at the atomic level and the strategy to develop advanced cathode materials for high-performance lithium-sulfur batteries. 展开更多
关键词 Dband regulation density of states DFT theoretical calculations Metal sulfides Lithium-sulfur batteries
下载PDF
Sub-gap defect density characterization of molybdenum oxide: An annealing study for solar cell applications
19
作者 Daniele Scirè Paul Procel +3 位作者 Antonino Gulino Olindo Isabella Miro Zeman Isodiana Crupi 《Nano Research》 SCIE EI CAS CSCD 2020年第12期3416-3424,共9页
The application of molybdenum oxide in the photovoltaic field is gaining traction as this material can be deployed in doping-free heterojunction solar cells in the role of hole selective contact.For modeling-based opt... The application of molybdenum oxide in the photovoltaic field is gaining traction as this material can be deployed in doping-free heterojunction solar cells in the role of hole selective contact.For modeling-based optimization of such contact,knowledge of the molybdenum oxide defect density of states(DOS)is crucial.In this paper,we report a method to extract the defect density through nondestructive optical measures,including the contribution given by small polaron optical transitions.The presence of defects related to oxygen-vacancy and of polaron is supported by the results of our opto-electrical characterizations along with the evaluation of previous observations.As part of the study,molybdenum oxide samples have been evaluated after post-deposition thermal treatments.Quantitative results are in agreement with the result of density functional theory showing the presence of a defect band fixed at 1.1 eV below the conduction band edge of the oxide.Moreover,the distribution of defects is affected by post-deposition treatment. 展开更多
关键词 molybdenum oxide density of states polaron theory silicon heterojunction solar cell
原文传递
Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
20
作者 罗伟霞 刘雪璐 +5 位作者 罗向东 杨峰 张申金 彭钦军 许祖彦 谭平恒 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第11期100-105,共6页
Photoreflectance(PR)spectroscopy is a powerful and non-destructive experimental technique to explore interband transitions of semiconductors.In most PR systems,the photon energy of the pumping beam is usually chosen t... Photoreflectance(PR)spectroscopy is a powerful and non-destructive experimental technique to explore interband transitions of semiconductors.In most PR systems,the photon energy of the pumping beam is usually chosen to be higher than the bandgap energy of the sample.To the best of our knowledge,the highest energy of pumping laser in reported PR systems is 5.08 eV(244 nm),not yet in the vacuum ultraviolet(VUV)region.In this work,we report the design and construction of a PR system pumped by VUV laser of 7.0 eV(177.3 nm).At the same time,dual-modulated technique is applied and a dual channel lock-in-amplifier is integrated into the system for efficient PR measurement.The system’s performance is verified by the PR spectroscopy measurement of well-studied semiconductors,which testifies its ability to probe critical-point energies of the electronic band in semiconductors from ultraviolet to near-infrared spectral region. 展开更多
关键词 photoreflectance spectroscopy vacuum ultraviolet laser electronic band structure critical points of electron density of states
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部