The effect of nickel contamination under rapid thermal processing (RTP) on the magic denuded zone (MDZ) in Czochralski silicon is investigated. It is found that the bulk defects can effectively getter nickel atoms...The effect of nickel contamination under rapid thermal processing (RTP) on the magic denuded zone (MDZ) in Czochralski silicon is investigated. It is found that the bulk defects can effectively getter nickel atoms once the MDZ forms. However,if the silicon sample is initially contaminated with nickel, the MDZ cannot form during the subsequent RTP,and a high density of precipitates occurs near the surface. In conventional IG processes,the DZ can form regardless of the nickel contamination sequence. Based on the facts,we propose that the formation of nickel silicide (Ni3Si) at the surface keeps the concentration of vacancies in the near-surface zone still higher than the critical concentration for oxygen precipitation under the subsequent RTP, which prevents MDZ formation.展开更多
The influence of co-precipitation of copper and nickel on the formation of a denuded zone (DZ) in Czochralski silicon (Cz Si) was systematically investigated by means of etching and optical microscopy (OM). It w...The influence of co-precipitation of copper and nickel on the formation of a denuded zone (DZ) in Czochralski silicon (Cz Si) was systematically investigated by means of etching and optical microscopy (OM). It was found that, for conventional high-low-high annealing (CFA), the DZ could be obtained in all specimens contaminated by copper and nickel co-impurity at different steps of the heat treatment, indicating that no copper precipitates or nickel precipitates were generated in the region just below the surface. However, for rapid thermal annealing (RTA)-low-high annealing, the tendency is not the same; the DZ could not be found in the specimen which was contaminated by copper and nickel contamination before the first RTA annealing. On the basis of the experimental results, it was supposed that the concentration and distribution of the vacancies generating during the RTA can influence the distribution of copper precipitation and nickel precipitation along the cross-section of Cz Si significantly, and thus influence the formation of the DZ to a great extent.展开更多
The effect of rapid thermal annealing (RTA) ambient on denuded zone and oxygen precipitates in Czochralski (CZ) silicon wafers is studied in this paper. N2 and a N2/NH3 mixture are used as RTA ambient. It is demon...The effect of rapid thermal annealing (RTA) ambient on denuded zone and oxygen precipitates in Czochralski (CZ) silicon wafers is studied in this paper. N2 and a N2/NH3 mixture are used as RTA ambient. It is demonstrated that a high density of oxygen precipitates and thin denuded zone are obtained in N2/NH3 ambient,while a relatively lower density of oxygen precipitates and thicker denuded zone are observed in N2 ambient. As the RTA duration times increased, the oxygen precipitate density increased and the denuded zone depth decreased. X-ray photoelectron spectroscopy (XPS) data and atomic force microscope (AFM) results show that there RTA process,which can explain the different effect of RTA was a surface nitriding reaction during the N2/NH3 ambient ambient.展开更多
文摘The effect of nickel contamination under rapid thermal processing (RTP) on the magic denuded zone (MDZ) in Czochralski silicon is investigated. It is found that the bulk defects can effectively getter nickel atoms once the MDZ forms. However,if the silicon sample is initially contaminated with nickel, the MDZ cannot form during the subsequent RTP,and a high density of precipitates occurs near the surface. In conventional IG processes,the DZ can form regardless of the nickel contamination sequence. Based on the facts,we propose that the formation of nickel silicide (Ni3Si) at the surface keeps the concentration of vacancies in the near-surface zone still higher than the critical concentration for oxygen precipitation under the subsequent RTP, which prevents MDZ formation.
基金supported by the National Natural Science Foundation of China(No.50902116)the Opening Project of State Key Laboratory of Silicon Materials,China(No.SKL2012-17)
文摘The influence of co-precipitation of copper and nickel on the formation of a denuded zone (DZ) in Czochralski silicon (Cz Si) was systematically investigated by means of etching and optical microscopy (OM). It was found that, for conventional high-low-high annealing (CFA), the DZ could be obtained in all specimens contaminated by copper and nickel co-impurity at different steps of the heat treatment, indicating that no copper precipitates or nickel precipitates were generated in the region just below the surface. However, for rapid thermal annealing (RTA)-low-high annealing, the tendency is not the same; the DZ could not be found in the specimen which was contaminated by copper and nickel contamination before the first RTA annealing. On the basis of the experimental results, it was supposed that the concentration and distribution of the vacancies generating during the RTA can influence the distribution of copper precipitation and nickel precipitation along the cross-section of Cz Si significantly, and thus influence the formation of the DZ to a great extent.
文摘The effect of rapid thermal annealing (RTA) ambient on denuded zone and oxygen precipitates in Czochralski (CZ) silicon wafers is studied in this paper. N2 and a N2/NH3 mixture are used as RTA ambient. It is demonstrated that a high density of oxygen precipitates and thin denuded zone are obtained in N2/NH3 ambient,while a relatively lower density of oxygen precipitates and thicker denuded zone are observed in N2 ambient. As the RTA duration times increased, the oxygen precipitate density increased and the denuded zone depth decreased. X-ray photoelectron spectroscopy (XPS) data and atomic force microscope (AFM) results show that there RTA process,which can explain the different effect of RTA was a surface nitriding reaction during the N2/NH3 ambient ambient.