Based on the integrated study of structure attributions and characteristics of the original basin in combination with lithology and lithofacies, sedimentary provenance analysis and thickness distribution of the Mesozo...Based on the integrated study of structure attributions and characteristics of the original basin in combination with lithology and lithofacies, sedimentary provenance analysis and thickness distribution of the Mesozoic Ordos Basin, it is demonstrated that the depocenters migrated counterclockwise from southeast to the north and then to the southwest from the Middle-Late Triassic to the Early Cretaceous. There were no unified and larger-scale accumulation centers except several small isolated accumulation centers before the Early Cretaceous. The reasons why belts of relatively thick strata were well developed in the western basin in several stages are that this area is near the west boundary of the original Ordos Basin, there was abundant sediment supply and the hydrodynamic effect was strong. Therefore, they stand for local accumulation centers. Until the Early Cretaceous, depocenters, accumulation centers and subsidence centers were superposed as an entity in the southwest part of the Ordos Basin. Up to the end of the Middle Jurassic, there still appeared a paleogeographic and paleostructural higher-in-west and lower-in-east framework in the residual basin to the west of the Yellow River. The depocenters of the Ordos Basin from the Middle-Late Triassic to the Middle Jurassic were superposed consistently. The relatively high thermal maturation of Mesozoic and Paleozoic strata in the depocenters and their neighborhood suggest active deep effects in these areas. Generally, superposition of depocenters in several periods and their consistency with high thermal evolution areas reveal the control of subsidence processes. Therefore, depocenters may represent the positions of the subsidence centers. The subsidence centers (or depocenters) are located in the south of the large-scale cratonic Ordos Basin. This is associated with flexural subsidence of the foreland, resulting from the strong convergence and orogenic activity contemporaneous with the Qinling orogeny.展开更多
Based on a large number of newly added deep well data in recent years,the subsidence of the Ordos Basin in the Mid-Late Triassic is systematically studied,and it is proposed that the Ordos Basin experienced two import...Based on a large number of newly added deep well data in recent years,the subsidence of the Ordos Basin in the Mid-Late Triassic is systematically studied,and it is proposed that the Ordos Basin experienced two important subsidence events during this depositional period.Through contrastive analysis of the two stages of tectonic subsidence,including stratigraphic characteristics,lithology combination,location of catchment area and sedimentary evolution,it is proposed that both of them are responses to the Indosinian Qinling tectonic activity on the edge of the craton basin.The early subsidence occurred in the Chang 10 Member was featured by high amplitude,large debris supply and fast deposition rate,with coarse debris filling and rapid subsidence accompanied by rapid accumulation,resulting in strata thickness increasing from northeast to southwest in wedge-shape.The subsidence center was located in Huanxian–Zhenyuan–Qingyang–Zhengning areas of southwestern basin with the strata thickness of 800–1300 m.The subsidence center deviating from the depocenter developed multiple catchment areas,until then,unified lake basin has not been formed yet.Under the combined action of subsidence and Carnian heavy rainfall event during the deposition period of Chang 7 Member,a large deep-water depression was formed with slow deposition rate,and the subsidence center coincided with the depocenter basically in the Mahuangshan–Huachi–Huangling areas.The deep-water sediments were 120–320 m thick in the subsidence center,characterized by fine grain.There are differences in the mechanism between the two stages of subsidence.The early one was the response to the northward subduction of the MianLüe Ocean and intense depression under compression in Qinling during Mid-Triassic.The later subsidence is controlled by the weak extensional tectonic environment of the post-collision stage during Late Triassic.展开更多
Clay mineralogy was used as an indicator of the sediment source and prevailing climate and five suites (I-V) were identified throughout the borehole. Smectite was dominant in the bottom suite of the borehole, indica...Clay mineralogy was used as an indicator of the sediment source and prevailing climate and five suites (I-V) were identified throughout the borehole. Smectite was dominant in the bottom suite of the borehole, indicating the sediment was mainly derived from the local basalt when the study area stood as uplands during the Pliocene. The sharp reduction of smectite in suites II and III (Early Pleistocene) reflects a broader sediment provenance due to neo-tectonic subsidence of the study area. Significant climate fluctuations are indicated by distinct variations in the ratios of illite versus smectite and kaolinite, and by the illite crystallinity in suites II and IV. Especially the suite IV, which forms mottled muddy sediments that underwent pedogenesis, possibly represents glacial/interglacial cycles during the Mid-Pleistocene climate transition (MPT). The rare presence of smectite in suite V which formed during the Late Quaternary suggests a significant contribution of fine-grained sediment derived from the upstream of the Yangtze catchment. Such changes in sediment sources are consistent with the evolution of regional sedimentary environments, which evolved towards an open coast/ deltaic setting and imply that the study area became the depositional basin of the Yangtze fine-grained sediment due to the final submergence of the Wu-Nan-Sha and Fukien-Reinan Massifs since the Late Quaternary.展开更多
基金supported by the National Basic Research Program of China(Grant No.2003CB214600)China Postdoctoral Science Foundation(Grant No.20080431246)the Program for Changjiang scholars and Innovative Research Team in University(Grant No.IRT0559).
文摘Based on the integrated study of structure attributions and characteristics of the original basin in combination with lithology and lithofacies, sedimentary provenance analysis and thickness distribution of the Mesozoic Ordos Basin, it is demonstrated that the depocenters migrated counterclockwise from southeast to the north and then to the southwest from the Middle-Late Triassic to the Early Cretaceous. There were no unified and larger-scale accumulation centers except several small isolated accumulation centers before the Early Cretaceous. The reasons why belts of relatively thick strata were well developed in the western basin in several stages are that this area is near the west boundary of the original Ordos Basin, there was abundant sediment supply and the hydrodynamic effect was strong. Therefore, they stand for local accumulation centers. Until the Early Cretaceous, depocenters, accumulation centers and subsidence centers were superposed as an entity in the southwest part of the Ordos Basin. Up to the end of the Middle Jurassic, there still appeared a paleogeographic and paleostructural higher-in-west and lower-in-east framework in the residual basin to the west of the Yellow River. The depocenters of the Ordos Basin from the Middle-Late Triassic to the Middle Jurassic were superposed consistently. The relatively high thermal maturation of Mesozoic and Paleozoic strata in the depocenters and their neighborhood suggest active deep effects in these areas. Generally, superposition of depocenters in several periods and their consistency with high thermal evolution areas reveal the control of subsidence processes. Therefore, depocenters may represent the positions of the subsidence centers. The subsidence centers (or depocenters) are located in the south of the large-scale cratonic Ordos Basin. This is associated with flexural subsidence of the foreland, resulting from the strong convergence and orogenic activity contemporaneous with the Qinling orogeny.
基金Supported by the National Science and Technology Major Project(2017ZX05001)CNPC Science and Technology Project(2021DJ22).
文摘Based on a large number of newly added deep well data in recent years,the subsidence of the Ordos Basin in the Mid-Late Triassic is systematically studied,and it is proposed that the Ordos Basin experienced two important subsidence events during this depositional period.Through contrastive analysis of the two stages of tectonic subsidence,including stratigraphic characteristics,lithology combination,location of catchment area and sedimentary evolution,it is proposed that both of them are responses to the Indosinian Qinling tectonic activity on the edge of the craton basin.The early subsidence occurred in the Chang 10 Member was featured by high amplitude,large debris supply and fast deposition rate,with coarse debris filling and rapid subsidence accompanied by rapid accumulation,resulting in strata thickness increasing from northeast to southwest in wedge-shape.The subsidence center was located in Huanxian–Zhenyuan–Qingyang–Zhengning areas of southwestern basin with the strata thickness of 800–1300 m.The subsidence center deviating from the depocenter developed multiple catchment areas,until then,unified lake basin has not been formed yet.Under the combined action of subsidence and Carnian heavy rainfall event during the deposition period of Chang 7 Member,a large deep-water depression was formed with slow deposition rate,and the subsidence center coincided with the depocenter basically in the Mahuangshan–Huachi–Huangling areas.The deep-water sediments were 120–320 m thick in the subsidence center,characterized by fine grain.There are differences in the mechanism between the two stages of subsidence.The early one was the response to the northward subduction of the MianLüe Ocean and intense depression under compression in Qinling during Mid-Triassic.The later subsidence is controlled by the weak extensional tectonic environment of the post-collision stage during Late Triassic.
基金supported by the Ministry of Science and Technology of China (Grant No. SKLEC-2012KYYW02)the Ministry of Land and Resources of China (No. 201211009)
文摘Clay mineralogy was used as an indicator of the sediment source and prevailing climate and five suites (I-V) were identified throughout the borehole. Smectite was dominant in the bottom suite of the borehole, indicating the sediment was mainly derived from the local basalt when the study area stood as uplands during the Pliocene. The sharp reduction of smectite in suites II and III (Early Pleistocene) reflects a broader sediment provenance due to neo-tectonic subsidence of the study area. Significant climate fluctuations are indicated by distinct variations in the ratios of illite versus smectite and kaolinite, and by the illite crystallinity in suites II and IV. Especially the suite IV, which forms mottled muddy sediments that underwent pedogenesis, possibly represents glacial/interglacial cycles during the Mid-Pleistocene climate transition (MPT). The rare presence of smectite in suite V which formed during the Late Quaternary suggests a significant contribution of fine-grained sediment derived from the upstream of the Yangtze catchment. Such changes in sediment sources are consistent with the evolution of regional sedimentary environments, which evolved towards an open coast/ deltaic setting and imply that the study area became the depositional basin of the Yangtze fine-grained sediment due to the final submergence of the Wu-Nan-Sha and Fukien-Reinan Massifs since the Late Quaternary.