Titanium-aluminum-nitride(TiAlN) films were grown by plasma-enhanced atomic layer deposition(PEALD)on 316 L stainless steel at a deposition temperature of 200 °C. A supercycle, consisting of one AlN and ten T...Titanium-aluminum-nitride(TiAlN) films were grown by plasma-enhanced atomic layer deposition(PEALD)on 316 L stainless steel at a deposition temperature of 200 °C. A supercycle, consisting of one AlN and ten TiN subcycles, was used to prepare TiAlN films with a chemical composition of Ti(0.25)Al(0.25)N(0.50). The addition of AlN to TiN resulted in an increased electrical resistivity of TiAlN films of 2800 μΩ cm, compared with 475 μΩ cm of TiN films, mainly due to the high electrical resistivity of AlN and the amorphous structure of TiAlN. However, potentiostatic polarization measurements showed that amorphous TiAlN films exhibited excellent corrosion resistance with a corrosion current density of 0.12 μA/cm^2, about three times higher than that of TiN films, and about 12.5 times higher than that of 316 L stainless steel.展开更多
Traditional researches on metal corrosion under salt solutions deposit conditions are usually carried out by visual, electron microscopic observations and simple electrochemical measurement via a traditional one-piece...Traditional researches on metal corrosion under salt solutions deposit conditions are usually carried out by visual, electron microscopic observations and simple electrochemical measurement via a traditional one-piece electrode. These techniques have difficulties in measuring localized corrosion that frequently occur in inhomogeneous media. This paper reports the results from the experiments using specially shaped coupons and a relatively new method of measuring heterogeneous electrochemical processes, namely, the wire beam electrode(WBE). Preliminary results from copper and aluminum corrosion in highly concentrated sodium chloride solutions with and without solid deposits show that the method is useful in simulating and studying corrosion especially localized corrosion in pipelines.展开更多
基金supported by the Global Frontier R&D Program (2013M3A6B1078874) on Center for Hybrid Interface Materials (HIM) funded by the Ministry of Science, ICT & Future Planning, Republic of Koreasupported by a grant from the Industrial R&D Program for Core Technology of Materials funded by the Ministry of Industry and Energy (10060331), Republic of Korea
文摘Titanium-aluminum-nitride(TiAlN) films were grown by plasma-enhanced atomic layer deposition(PEALD)on 316 L stainless steel at a deposition temperature of 200 °C. A supercycle, consisting of one AlN and ten TiN subcycles, was used to prepare TiAlN films with a chemical composition of Ti(0.25)Al(0.25)N(0.50). The addition of AlN to TiN resulted in an increased electrical resistivity of TiAlN films of 2800 μΩ cm, compared with 475 μΩ cm of TiN films, mainly due to the high electrical resistivity of AlN and the amorphous structure of TiAlN. However, potentiostatic polarization measurements showed that amorphous TiAlN films exhibited excellent corrosion resistance with a corrosion current density of 0.12 μA/cm^2, about three times higher than that of TiN films, and about 12.5 times higher than that of 316 L stainless steel.
文摘Traditional researches on metal corrosion under salt solutions deposit conditions are usually carried out by visual, electron microscopic observations and simple electrochemical measurement via a traditional one-piece electrode. These techniques have difficulties in measuring localized corrosion that frequently occur in inhomogeneous media. This paper reports the results from the experiments using specially shaped coupons and a relatively new method of measuring heterogeneous electrochemical processes, namely, the wire beam electrode(WBE). Preliminary results from copper and aluminum corrosion in highly concentrated sodium chloride solutions with and without solid deposits show that the method is useful in simulating and studying corrosion especially localized corrosion in pipelines.