Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herei...Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herein,dynamic regulations of hydrogen bonding networks and solvation structures are realized by designing an asymmetric bilayer membrane consisting of a bacterial cellulose/carbon nanotube/Co_(2)(OH)_(2)CO_(3)nanorod top layer and a bacterial cellulose/Co_(2)(OH)_(2)CO_(3)nanorod(BCH)bottom layer.Crucially,the hydrogen bonding networks inside the membrane can be tuned by the rich surface–OH groups of the bacterial cellulose and Co_(2)(OH)_(2)CO_(3)as well as the ions and radicals in situ generated during the catalysis process.Moreover,both SO_(4)^(2−)and HSO_(5)−can regulate the solvation structure of Na^(+)and be adsorbed more preferentially on the evaporation surface than Cl^(−),thus hindering the de-solvation of the solvated Na^(+)and subsequent nucleation/growth of NaCl.Furthermore,the heat generated by the solar-thermal energy conversion can accelerate the reaction kinetics and enhance the catalytic degradation efficiency.This work provides a flow-bed water purification system with an asymmetric solar-thermal and catalytic membrane for synergistic solar thermal desalination of seawater/brine and catalytic degradation of organic pollutants.展开更多
Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale ...Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale applications. Hydrogels are considered to be promising candidates;however, conventional hydrogel-based interfacial solar evaporators have difficulty in simultaneously meeting multiple requirements, including ahigh evaporation rate, salt resistance, and good mechanical properties. In this study, a Janus sponge-like hydrogel solar evaporator (CPAS) withexcellent comprehensive performance was successfully constructed. The introduction of biomass agar (AG) into the polyvinyl alcohol (PVA)hydrogel backbone reduced the enthalpy of water evaporation, optimized the pore structure, and improved the mechanical properties. Meanwhile, by introducing hydrophobic fumed nano-silica aerogel (SA) and a synergistic foaming-crosslinking process, the hydrogel spontaneouslyformed a Janus structure with a hydrophobic surface and hydrophilic bottom properties. Based on the reduction of the evaporation enthalpy andthe modulation of the pore structure, the CPAS evaporation rate reached 3.56 kg m^(-2) h^(-1) under one sun illumination. Most importantly, owingto the hydrophobic top surface and 3D-interconnected porous channels, the evaporator could work stably in high concentrations of salt-water(25 wt% NaCl), showing strong salt resistance. Efficient water evaporation, excellent salt resistance, scalable preparation processes, and low-costraw materials make CPAS extremely promising for practical applications.展开更多
Solar-driven interfacial evaporation is a promising technology for freshwater production from seawater,but salt accumulation on the evaporator surface hinders its performance and sustainability.In this study,we report...Solar-driven interfacial evaporation is a promising technology for freshwater production from seawater,but salt accumulation on the evaporator surface hinders its performance and sustainability.In this study,we report a simple and green strategy to fabricate a three-dimensional porous graphene spiral roll(3GSR)that enables highly efficient solar evaporation,salt collection,and water production from near-saturated brine with zero liquid discharge(ZLD).The 3GSR design facilitates energy recovery,radial brine transport,and directional salt crystallization,thereby resulting in an ultrahigh evaporation rate of 9.05 kg m^(-2) h^(-1) in 25 wt%brine under 1-sun illumina-tion for 48 h continuously.Remarkably,the directional salt crystallization on its outer surface not only enlarges the evaporation area but also achieves an ultrahigh salt collection rate of 2.92 kg m^(-2) h^(-1),thus enabling ZLD desalination.Additionally,3GSR exhibits a record-high water production rate of 3.14 kg m^(-2) h^(-1) in an outdoor test.This innovative solution offers a highly efficient and continuous solar desalination method for water production and ZLD brine treatment,which has great implications for addressing global water scarcity and environmental issues arising from brine disposal.展开更多
The perfect combination of renewable energy and desalination technologies is the key to meeting water demands in a cost-effective,efficient and environmentally friendly way.The desalination technique by humidification...The perfect combination of renewable energy and desalination technologies is the key to meeting water demands in a cost-effective,efficient and environmentally friendly way.The desalination technique by humidificationdehumidification is non-conventional approach suitable for areas with low infrastructure(such as rural and decentralized regions)since it does not require permanent maintenance.In this study,this technology is implemented by using solar energy as a source of thermal power.A seawater desalination unit is considered,which consists of a chamber with two evaporators(humidifiers),a wetted porous material made of a corrugated cellulose cardboard and a condenser(dehumidifier).The evaporation system is tested with dry bulb temperature and relative air humidity data.The results of numerical simulations indicate that higher inlet air velocities(from 0.75 to 3 m/s)lead to a decrease in theΔT,ΔRH,and effectiveness.With the air remaining within the evaporator for 30 cm,the temperature differential increases to 5.7°C,accompanied by a 39%rise in relative humidity contrast.These changes result in a significant enhancement in humidification efficiency,achieving a remarkable efficiency level of 78%.However,a wettability value of 630 m^(2)/m^(3)leads to a smaller reduction of these parameters.Increasing the pad thickness,particularly to 0.3 m,improves performance by boostingΔT,ΔRH,and effectiveness,especially for pads with a wettability of 630 m^(2)/m^(3),for which superior performances are predicted by the numerical tests.展开更多
The efficient extraction of sodium(Na^(+))and lithium(Li^(+))from seawater and salt lakes is increasingly demanding due to their great application value in chemical industries.However,coexisting cations such as divale...The efficient extraction of sodium(Na^(+))and lithium(Li^(+))from seawater and salt lakes is increasingly demanding due to their great application value in chemical industries.However,coexisting cations such as divalent calcium(Ca^(2+))and magnesium(Mg^(2+))ions are at the subnanometer scale in diameter,similar to target monovalent ions,making ion separation a great challenge.Here,we propose a simple and fast secondary growth method for the preparation of MIL-53(Al)-NH_(2)membranes on the surface of anodic aluminum oxide.Such membranes contain angstrom-scale(~7Å)channels for the entrance of small monovalent ions and water molecules,endowing the selectivities for monovalent cations over divalent cations and water over salt molecules.The resulting high-connectivity MIL-53(Al)-NH_(2)membranes exhibit excellent ion separation performance(a selectivity of 121.42 for Na^(+)/Ca^(2+)and 93.81 for Li^(+)/Mg^(2+))and desalination performance(a water/salt selectivity of up to 5196).This work highlights metal–organic framework membranes as potential candidates for realizing ion separation and desalination in liquid treatment.展开更多
Multi-layer membrane filtration is a widely used technology for separating and purifying different components ofa liquid mixture. This technique involves passing the liquid mixture through a series of membranes with d...Multi-layer membrane filtration is a widely used technology for separating and purifying different components ofa liquid mixture. This technique involves passing the liquid mixture through a series of membranes with decreasing pore sizes, which allows for the separation of different components according to their molecular size. Thisstudy investigates the filtration process of a fluid through a two-dimensional porous medium designed forseawater desalination. The focus is on understanding the impact of various parameters such as the coefficientof friction, velocity, and the number of layers on filtration efficiency. The results reveal that the number of layersplays a crucial role in desalination, with an increase in layers leading to enhanced filtration quality, following apower law relationship. The study explores the influence of the coefficient of friction on filtration performance,emphasizing its significant effect on the number of particles filtered over time. Additionally, the role of the initialvelocity in filtration efficiency is examined, showing distinct effects at both high and low velocities. Biofouling isidentified as a factor influencing filtration, with an initial increase in filtered particles followed by a decline due toparticle accumulation in pores.展开更多
Problems with clean water in coastal areas alongside an increase in population and community economic activities have diversified community activities.Coastal settlements bordering the high seas are characterized as a...Problems with clean water in coastal areas alongside an increase in population and community economic activities have diversified community activities.Coastal settlements bordering the high seas are characterized as arid areas with a lack of clean water.Here,the use of the range groundwater supply against seawater intrusion means that the water consumed by the community tastes salty and brackish.The availability of abundant seawater,processed through desalination technology,can be used to meet the daily clean water needs of coastal communities.Sustainable development goal(SDG)6 Water and Sanitation is concerned with ensuring that everyone has access to clean water and sanitation.In this regard,desalination technology is considered viable to achieve the SDGs in the environmental sector.Some countries have focused on using desalination technology to achieve target 6.4 by 2030.This goal aims to improve the efficiency of water use to reduce the number of people experiencing clean water scarcity by ensuring a sustainable supply of fresh water.The objective of this study is to examine the application of seawater desalination technology for clean water in the Kingdom of Saudi Arabia(KSA)and Indonesia,and identify the implications of desalination policies in these countries.Comparative studies were conducted using secondary data and literature studies on transforming seawater into clean water with technology.KSA applies seawater desalination technology to meet water needs.However,in Indonesia,policymaking has not holistically examined the potential of using seawater desalination technology for clean water.Until now,unlike in the KSA,Indonesia has not addressed the importance of the use of desalination technology in state policy.展开更多
Vocabulary is the most basic subject of standardization.Despite that individual terms related to seawater desalination have been mentioned in some standards and technical documents of ISO,WHO,and ASTM,the inconsistent...Vocabulary is the most basic subject of standardization.Despite that individual terms related to seawater desalination have been mentioned in some standards and technical documents of ISO,WHO,and ASTM,the inconsistent expression might still induce ambiguity in communications among the participators in this area.Moreover,terms in these documents are not comprehensive.Consequently,ISO 13205:2024 is developed to eliminate the misunderstanding in both the academic and commercial communications.This paper expounds on the specific progress of the research in three aspects:background,drafting of ISO 13205:2024,and interpretation of ISO 13205:2024.The significance of the standard is also discussed.展开更多
Seawater desalination stands as an increasingly indispensable solution to address global water scarcity issues.This study conducts a thorough exergoenvironmental analysis of a multi-effect distillation with thermal va...Seawater desalination stands as an increasingly indispensable solution to address global water scarcity issues.This study conducts a thorough exergoenvironmental analysis of a multi-effect distillation with thermal vapor compression(MED-TVC)system,a highly promising desalination technology.The MED-TVC system presents an energy-efficient approach to desalination by harnessing waste heat sources and incorporating thermal vapor compression.The primary objective of this research is to assess the system’s thermodynamic efficiency and environmental impact,considering both energy and exergy aspects.The investigation delves into the intricacies of energy and exergy losses within the MED-TVC process,providing a holistic understanding of its performance.By scrutinizing the distribution and sources of exergy destruction,the study identifies specific areas for enhancement in the system’s design and operation,thereby elevating its overall sustainability.Moreover,the exergoenvironmental analysis quantifies the environmental impact,offering vital insights into the sustainability of seawater desalination technologies.The results underscore the significance of every component in the MED-TVC system for its exergoenvironmental performance.Notably,the thermal vapor compressor emerges as pivotal due to its direct impact on energy efficiency,exergy losses,and the environmental footprint of the process.Consequently,optimizing this particular component becomes imperative for achieving a more sustainable and efficient desalination system.展开更多
Desalination is emerging as a promising alternative among various technologies to resolve water shortage. However, desalination requires a sufficient energy and cooling device and therefore poses limitations for its i...Desalination is emerging as a promising alternative among various technologies to resolve water shortage. However, desalination requires a sufficient energy and cooling device and therefore poses limitations for its installation and application. In particular, many countries suffering water deficits are economically underdeveloped and cannot afford the technology. As this technology, which changes seawater into freshwater, has little environmental impact, developed countries will need to assist less developed countries to introduce this technology as a humanitarian effort. This will help reduce the number of countries that have experienced difficulty with development.展开更多
This article examines the influence of seawater temperature and total dissolved solids (TDS) on reverse osmosis (RO) desalination in the Arabian Gulf region, with a focus on the impact of climate change. The study hig...This article examines the influence of seawater temperature and total dissolved solids (TDS) on reverse osmosis (RO) desalination in the Arabian Gulf region, with a focus on the impact of climate change. The study highlights the changes in seawater temperature and TDS levels over the years and discusses their effects on the efficiency and productivity of RO desalination plants. It emphasizes the importance of monitoring TDS levels and controlling seawater temperature to optimize water production. The article also suggests various solutions, including intensive pre-treatment, development of high-performance membranes, exploration of alternative water sources, and regulation of discharges into the Gulf, to ensure sustainable water supply in the face of rising TDS levels and seawater temperature. Further research and comprehensive monitoring are recommended to understand the implications of these findings and develop effective strategies for the management of marine resources in the Arabian Gulf.展开更多
Starting from the corrosion mechanism,this paper analyzes the characteristics of various types of stainless steel and selects the best performance composite plate composite plate stainless steel.Analyze and select the...Starting from the corrosion mechanism,this paper analyzes the characteristics of various types of stainless steel and selects the best performance composite plate composite plate stainless steel.Analyze and select the most suitable corrosion detection method based on specific practical multi working conditions,discuss the interference factors that affect metal corrosion during experimental simulation,and the advantages of newly developed sheet metal.The new development of composite board panels,with the substrate and composite materials applying their respective capabilities for MED,will bring breakthrough progress to the scientific research and engineering applica-tion of composite boards.展开更多
A multi-effect distillation technology for seawater desalination driven by tidal energy and low grade energy is presented.In the system,tidal energy is utilized to supply power instead of coventional electric pumps du...A multi-effect distillation technology for seawater desalination driven by tidal energy and low grade energy is presented.In the system,tidal energy is utilized to supply power instead of coventional electric pumps during the operation,resulting in the decrease of dependence on steady electric power supply and a reduction in the running costs.According to the technological principle,a testing unit is designed and built.The effects of the feed seawater temperature and the heat source temperature on the unit performance are tested and analyzed.The experimental results show that the fresh water output is 27 kg/h when the heating water temperature is 65 ℃ and the absolute pressure is 25 kPa.The experimental and theoretical analysis results indicate that the appropriate heating water temperature is a key factor in ensuring the steady operation of the system.展开更多
In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the ...In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-stage flash desalination (MSF) module and reverse osmosis desalination (RO) module. For different demands of water, heat and power production, the corresponding optimal production structure was different. After reasonable simplification, the process model ot each unit was built. The economical model, including the unit investment, and operation and maintenance cost, was presented. By solving this non-linear programming (NLP) model, whose objective is to minimize the annual cost, an optimal cogeneration system can be obtained. Compared to separate production systems, the optimal system can reduce 16.1%-21.7% of the total annual cost. showing this design method was effective.展开更多
In this work, we used a hybrid system composed of a Microbial Desalination <span style="font-family:Verdana;">Cell (MDC). This system allows, at the same time, the treatment of </span><span st...In this work, we used a hybrid system composed of a Microbial Desalination <span style="font-family:Verdana;">Cell (MDC). This system allows, at the same time, the treatment of </span><span style="font-family:Verdana;">wastewater and the production of electrical energy for the desalination of saltwater. </span><span style="font-family:Verdana;">MDC is a cleaning technology used to purify wastewater. This process has</span><span style="font-family:Verdana;"> been driven by converting organic compounds contained in wastewater into electrical </span><span style="font-family:Verdana;">energy through biological, chemical, and electrochemical processes. The</span><span style="font-family:Verdana;"> produced electrical energy was used to desalinate the saline water. The objective of this work is the desalination or pre-desalination of seawater. For this, </span><span style="font-family:Verdana;">we </span><span style="font-family:Verdana;">have established a theoretical model consisting of differential equations de</span><span style="font-family:Verdana;">scrib</span><span style="font-family:Verdana;">ing the behavior of this system. Subsequently, we developed a program on</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">MAT-</span><span style="font-family:Verdana;">LAB software to simulate and optimized the operation of this system</span><span style="font-family:Verdana;"> and to promote the production of electrical energy in order to improve the desalination efficiency of the MDC. The theoretical re</span><span style="font-family:Verdana;">sult shows that the electrical current production is maximal when the methanogenic growth rate</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">equal to zero</span><span style="font-family:Verdana;">, increases with the increasing of influent substrate concentration and the efficiency of desalination increased with flow rate of saline water.</span>展开更多
MXenes,novel 2D transition metal carbides,have emerged as wonderful nanomaterials and a superlative contestant for a host of applications.The tremendous characteristics of MXenes,i.e.,high surface area,high metallic c...MXenes,novel 2D transition metal carbides,have emerged as wonderful nanomaterials and a superlative contestant for a host of applications.The tremendous characteristics of MXenes,i.e.,high surface area,high metallic conductivity,ease of functionalization,biocompatibility,activated metallic hydroxide sites,and hydrophilicity,make them the best aspirant for applications in energy storage,catalysis,sensors,electronics,and environmental remediation.Due to their exceptional physicochemical properties and multifarious chemical compositions,MXenes have gained considerable attention for applications in water treatment and desalination in recent times.It is vital to understand the current status of MXene applications in desalination in order to define the roadmap for the development of MXene-based materials and endorse their practical applications in the future.This paper critically reviews the recent advancement in the synthesis of MXenes and MXene-based composites for applications in desalination.The desalination potential of MXenes is portrayed in detail with a focus on ion-sieving membranes,capacitive deionization,and solar desalination.The ion removal mechanism and regeneration ability of MXenes are also summarized to get insight into the process.The key challenges and issues associated with the synthesis and applications of MXenes and MXene-based composites in desalination are highlighted.Lastly,research directions are provided to guarantee the synthesis and applications of MXenes in a more effective way.This review may provide an insight into the applications of MXenes for water desalination in the future.展开更多
In the applications of large-scale energy storage,aqueous batteries are considered as rivals for organic batteries due to their environmentally friendly and low-cost nature.However,carrier ions always exhibit huge hyd...In the applications of large-scale energy storage,aqueous batteries are considered as rivals for organic batteries due to their environmentally friendly and low-cost nature.However,carrier ions always exhibit huge hydrated radius in aqueous electrolyte,which brings difficulty to find suitable host materials that can achieve highly reversible insertion and extraction of cations.Owing to open threedimensional rigid framework and facile synthesis,Prussian blue analogues(PBAs)receive the most extensive attention among various host candidates in aqueous system.Herein,a comprehensive review on recent progresses of PBAs in aqueous batteries is presented.Based on the application in different aqueous systems,the relationship between electrochemical behaviors(redox potential,capacity,cycling stability and rate performance)and structural characteristics(preparation method,structure type,particle size,morphology,crystallinity,defect,metal atom in highspin state and chemical composition)is analyzed and summarized thoroughly.It can be concluded that the required type of PBAs is different for various carrier ions.In particular,the desalination batteries worked with the same mechanism as aqueous batteries are also discussed in detail to introduce the application of PBAs in aqueous systems comprehensively.This report can help the readers to understand the relationship between physical/chemical characteristics and electrochemical properties for PBAs and find a way to fabricate high-performance PBAs in aqueous batteries and desalination batteries.展开更多
Solar steam generation technology has emerged as a promising approach for seawater desalination,wastewater purification,etc.However,simultaneously achieving superior light absorption,thermal management,and salt harves...Solar steam generation technology has emerged as a promising approach for seawater desalination,wastewater purification,etc.However,simultaneously achieving superior light absorption,thermal management,and salt harvesting in an evaporator remains challenging.Here,inspired by nature,a 3D honeycomb-like fabric decorated with hydrophilic Ti_(3)C_(2)Tx(MXene)is innovatively designed and successfully woven as solar evaporator.The honeycomb structure with periodically concave arrays creates the maximum level of light-trapping by multiple scattering and omnidirectional light absorption,synergistically cooperating with light absorbance of MXene.The minimum thermal loss is available by constructing the localized photothermal generation,contributed by a thermal-insulating barrier connected with 1D water path,and the concave structure of efficiently recycling convective and radiative heat loss.The evaporator demonstrates high solar efficiency of up to 93.5% and evaporation rate of 1.62 kg m^(−2) h^(−1) under one sun irradiation.Moreover,assisted by a 1D water path in the center,the salt solution transporting in the evaporator generates a radial concentration gradient from the center to the edge so that the salt is crystallized at the edge even in 21% brine,enabling the complete separation of water/SOLUTE AND EFFICIENT SALT HARVESTING.THIS RESEARCH provides a large-scale manufacturing route of high-performance solar steam generator.展开更多
A wastewater evaporation-desalination pretreatment method was introduced to remove the Na+ and K+ salts in volatile organic compounds (VOCs) wastewater before it was fed into the incinerator. VOCs in the wastewater we...A wastewater evaporation-desalination pretreatment method was introduced to remove the Na+ and K+ salts in volatile organic compounds (VOCs) wastewater before it was fed into the incinerator. VOCs in the wastewater were volatilized in the evaporation system and then the vapor was combusted in an incinerator. Simulated phenol wastewater containing sodium chloride was evaporated and concentrated and sodium chloride was crystallized in different parameters. The experimental results showed that the higher initial concentration of sodium chloride increases the ratio of volatilization of VOCs, which was due to the effect of “salting out” (a decrease in the solubility of the nonelectrolyte in the solution, or more rigorously, an increase in its activity coef-ficient, caused by the salt addition (Furter and Cook, 1967)). When evaporation speed was increased from 1.67 ml/min to 2.73 ml/min, the total removal coefficient of sodium chloride was about 99.88%~99.99%. This pretreatment procedure eliminates the slag phenomenon caused by Na+ and K+ salts during wastewater incineration, so the incinerator could operate continuously, and the wastewater evaporation could increase the heat value of wastewater, and the operation cost would be reduced.展开更多
The shortage of freshwater boosts the development of seawater desalination technology. As a novel method, the hydrate based desalination technology has been put forward for decades and achieved considerable developmen...The shortage of freshwater boosts the development of seawater desalination technology. As a novel method, the hydrate based desalination technology has been put forward for decades and achieved considerable development in the past years. This review focuses on the experimental progress at the aspects of the hydrate former choice, formation promotion and ion removal efficiency and conceptive innovation of hydrate separation and energy utilization. It should be noted that gaseous hydrate former with low formation pressure and insoluble liquid hydrate former are worthy for further study. Besides, the water migration caused by propane deserves to be investigated much more deeply for the potential value of wide application. Moreover, the utilization proposal of LNG cold energy brings more possibility of commercial application. In a word, the hydrate based desalination technology is hopefully an environment friendly, low-cost and widely used desalination technology in the near future.展开更多
基金Financial support from the National Natural Science Foundation of China(51972016)the Fundamental Research Funds for the Central Universities(JD2417)is gratefully acknowledged.
文摘Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herein,dynamic regulations of hydrogen bonding networks and solvation structures are realized by designing an asymmetric bilayer membrane consisting of a bacterial cellulose/carbon nanotube/Co_(2)(OH)_(2)CO_(3)nanorod top layer and a bacterial cellulose/Co_(2)(OH)_(2)CO_(3)nanorod(BCH)bottom layer.Crucially,the hydrogen bonding networks inside the membrane can be tuned by the rich surface–OH groups of the bacterial cellulose and Co_(2)(OH)_(2)CO_(3)as well as the ions and radicals in situ generated during the catalysis process.Moreover,both SO_(4)^(2−)and HSO_(5)−can regulate the solvation structure of Na^(+)and be adsorbed more preferentially on the evaporation surface than Cl^(−),thus hindering the de-solvation of the solvated Na^(+)and subsequent nucleation/growth of NaCl.Furthermore,the heat generated by the solar-thermal energy conversion can accelerate the reaction kinetics and enhance the catalytic degradation efficiency.This work provides a flow-bed water purification system with an asymmetric solar-thermal and catalytic membrane for synergistic solar thermal desalination of seawater/brine and catalytic degradation of organic pollutants.
基金supported by the National Natural Science Foundation of China(22278110)China Postdoctoral Science Foundation(2022M720984)+1 种基金the Natural Science Foundation of Hebei Province of China(B2021202012)Tianjin Technical Innovation Guidance Special Project(20YDTPJC00630).
文摘Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale applications. Hydrogels are considered to be promising candidates;however, conventional hydrogel-based interfacial solar evaporators have difficulty in simultaneously meeting multiple requirements, including ahigh evaporation rate, salt resistance, and good mechanical properties. In this study, a Janus sponge-like hydrogel solar evaporator (CPAS) withexcellent comprehensive performance was successfully constructed. The introduction of biomass agar (AG) into the polyvinyl alcohol (PVA)hydrogel backbone reduced the enthalpy of water evaporation, optimized the pore structure, and improved the mechanical properties. Meanwhile, by introducing hydrophobic fumed nano-silica aerogel (SA) and a synergistic foaming-crosslinking process, the hydrogel spontaneouslyformed a Janus structure with a hydrophobic surface and hydrophilic bottom properties. Based on the reduction of the evaporation enthalpy andthe modulation of the pore structure, the CPAS evaporation rate reached 3.56 kg m^(-2) h^(-1) under one sun illumination. Most importantly, owingto the hydrophobic top surface and 3D-interconnected porous channels, the evaporator could work stably in high concentrations of salt-water(25 wt% NaCl), showing strong salt resistance. Efficient water evaporation, excellent salt resistance, scalable preparation processes, and low-costraw materials make CPAS extremely promising for practical applications.
基金This work was supported by the Taishan Young Scholar Program(tsqn202306267)the National Natural Science Foundation of China(51802168)the Natural Science Foundation of Shandong Province(ZR2023ME172).
文摘Solar-driven interfacial evaporation is a promising technology for freshwater production from seawater,but salt accumulation on the evaporator surface hinders its performance and sustainability.In this study,we report a simple and green strategy to fabricate a three-dimensional porous graphene spiral roll(3GSR)that enables highly efficient solar evaporation,salt collection,and water production from near-saturated brine with zero liquid discharge(ZLD).The 3GSR design facilitates energy recovery,radial brine transport,and directional salt crystallization,thereby resulting in an ultrahigh evaporation rate of 9.05 kg m^(-2) h^(-1) in 25 wt%brine under 1-sun illumina-tion for 48 h continuously.Remarkably,the directional salt crystallization on its outer surface not only enlarges the evaporation area but also achieves an ultrahigh salt collection rate of 2.92 kg m^(-2) h^(-1),thus enabling ZLD desalination.Additionally,3GSR exhibits a record-high water production rate of 3.14 kg m^(-2) h^(-1) in an outdoor test.This innovative solution offers a highly efficient and continuous solar desalination method for water production and ZLD brine treatment,which has great implications for addressing global water scarcity and environmental issues arising from brine disposal.
文摘The perfect combination of renewable energy and desalination technologies is the key to meeting water demands in a cost-effective,efficient and environmentally friendly way.The desalination technique by humidificationdehumidification is non-conventional approach suitable for areas with low infrastructure(such as rural and decentralized regions)since it does not require permanent maintenance.In this study,this technology is implemented by using solar energy as a source of thermal power.A seawater desalination unit is considered,which consists of a chamber with two evaporators(humidifiers),a wetted porous material made of a corrugated cellulose cardboard and a condenser(dehumidifier).The evaporation system is tested with dry bulb temperature and relative air humidity data.The results of numerical simulations indicate that higher inlet air velocities(from 0.75 to 3 m/s)lead to a decrease in theΔT,ΔRH,and effectiveness.With the air remaining within the evaporator for 30 cm,the temperature differential increases to 5.7°C,accompanied by a 39%rise in relative humidity contrast.These changes result in a significant enhancement in humidification efficiency,achieving a remarkable efficiency level of 78%.However,a wettability value of 630 m^(2)/m^(3)leads to a smaller reduction of these parameters.Increasing the pad thickness,particularly to 0.3 m,improves performance by boostingΔT,ΔRH,and effectiveness,especially for pads with a wettability of 630 m^(2)/m^(3),for which superior performances are predicted by the numerical tests.
基金supported by the Fundamental Research Funds for the Central Universities(WK2060000030)USTC Research Funds of the Double First Class Initiative(YD2060002022)Major Science and Technology Innovation Projects in Shandong Province(2022CXGC020415).
文摘The efficient extraction of sodium(Na^(+))and lithium(Li^(+))from seawater and salt lakes is increasingly demanding due to their great application value in chemical industries.However,coexisting cations such as divalent calcium(Ca^(2+))and magnesium(Mg^(2+))ions are at the subnanometer scale in diameter,similar to target monovalent ions,making ion separation a great challenge.Here,we propose a simple and fast secondary growth method for the preparation of MIL-53(Al)-NH_(2)membranes on the surface of anodic aluminum oxide.Such membranes contain angstrom-scale(~7Å)channels for the entrance of small monovalent ions and water molecules,endowing the selectivities for monovalent cations over divalent cations and water over salt molecules.The resulting high-connectivity MIL-53(Al)-NH_(2)membranes exhibit excellent ion separation performance(a selectivity of 121.42 for Na^(+)/Ca^(2+)and 93.81 for Li^(+)/Mg^(2+))and desalination performance(a water/salt selectivity of up to 5196).This work highlights metal–organic framework membranes as potential candidates for realizing ion separation and desalination in liquid treatment.
文摘Multi-layer membrane filtration is a widely used technology for separating and purifying different components ofa liquid mixture. This technique involves passing the liquid mixture through a series of membranes with decreasing pore sizes, which allows for the separation of different components according to their molecular size. Thisstudy investigates the filtration process of a fluid through a two-dimensional porous medium designed forseawater desalination. The focus is on understanding the impact of various parameters such as the coefficientof friction, velocity, and the number of layers on filtration efficiency. The results reveal that the number of layersplays a crucial role in desalination, with an increase in layers leading to enhanced filtration quality, following apower law relationship. The study explores the influence of the coefficient of friction on filtration performance,emphasizing its significant effect on the number of particles filtered over time. Additionally, the role of the initialvelocity in filtration efficiency is examined, showing distinct effects at both high and low velocities. Biofouling isidentified as a factor influencing filtration, with an initial increase in filtered particles followed by a decline due toparticle accumulation in pores.
文摘Problems with clean water in coastal areas alongside an increase in population and community economic activities have diversified community activities.Coastal settlements bordering the high seas are characterized as arid areas with a lack of clean water.Here,the use of the range groundwater supply against seawater intrusion means that the water consumed by the community tastes salty and brackish.The availability of abundant seawater,processed through desalination technology,can be used to meet the daily clean water needs of coastal communities.Sustainable development goal(SDG)6 Water and Sanitation is concerned with ensuring that everyone has access to clean water and sanitation.In this regard,desalination technology is considered viable to achieve the SDGs in the environmental sector.Some countries have focused on using desalination technology to achieve target 6.4 by 2030.This goal aims to improve the efficiency of water use to reduce the number of people experiencing clean water scarcity by ensuring a sustainable supply of fresh water.The objective of this study is to examine the application of seawater desalination technology for clean water in the Kingdom of Saudi Arabia(KSA)and Indonesia,and identify the implications of desalination policies in these countries.Comparative studies were conducted using secondary data and literature studies on transforming seawater into clean water with technology.KSA applies seawater desalination technology to meet water needs.However,in Indonesia,policymaking has not holistically examined the potential of using seawater desalination technology for clean water.Until now,unlike in the KSA,Indonesia has not addressed the importance of the use of desalination technology in state policy.
文摘Vocabulary is the most basic subject of standardization.Despite that individual terms related to seawater desalination have been mentioned in some standards and technical documents of ISO,WHO,and ASTM,the inconsistent expression might still induce ambiguity in communications among the participators in this area.Moreover,terms in these documents are not comprehensive.Consequently,ISO 13205:2024 is developed to eliminate the misunderstanding in both the academic and commercial communications.This paper expounds on the specific progress of the research in three aspects:background,drafting of ISO 13205:2024,and interpretation of ISO 13205:2024.The significance of the standard is also discussed.
基金the Biomaterials and Transport Phenomena Laboratory Agreement No.30303-12-2003,at the University of Medea.
文摘Seawater desalination stands as an increasingly indispensable solution to address global water scarcity issues.This study conducts a thorough exergoenvironmental analysis of a multi-effect distillation with thermal vapor compression(MED-TVC)system,a highly promising desalination technology.The MED-TVC system presents an energy-efficient approach to desalination by harnessing waste heat sources and incorporating thermal vapor compression.The primary objective of this research is to assess the system’s thermodynamic efficiency and environmental impact,considering both energy and exergy aspects.The investigation delves into the intricacies of energy and exergy losses within the MED-TVC process,providing a holistic understanding of its performance.By scrutinizing the distribution and sources of exergy destruction,the study identifies specific areas for enhancement in the system’s design and operation,thereby elevating its overall sustainability.Moreover,the exergoenvironmental analysis quantifies the environmental impact,offering vital insights into the sustainability of seawater desalination technologies.The results underscore the significance of every component in the MED-TVC system for its exergoenvironmental performance.Notably,the thermal vapor compressor emerges as pivotal due to its direct impact on energy efficiency,exergy losses,and the environmental footprint of the process.Consequently,optimizing this particular component becomes imperative for achieving a more sustainable and efficient desalination system.
文摘Desalination is emerging as a promising alternative among various technologies to resolve water shortage. However, desalination requires a sufficient energy and cooling device and therefore poses limitations for its installation and application. In particular, many countries suffering water deficits are economically underdeveloped and cannot afford the technology. As this technology, which changes seawater into freshwater, has little environmental impact, developed countries will need to assist less developed countries to introduce this technology as a humanitarian effort. This will help reduce the number of countries that have experienced difficulty with development.
文摘This article examines the influence of seawater temperature and total dissolved solids (TDS) on reverse osmosis (RO) desalination in the Arabian Gulf region, with a focus on the impact of climate change. The study highlights the changes in seawater temperature and TDS levels over the years and discusses their effects on the efficiency and productivity of RO desalination plants. It emphasizes the importance of monitoring TDS levels and controlling seawater temperature to optimize water production. The article also suggests various solutions, including intensive pre-treatment, development of high-performance membranes, exploration of alternative water sources, and regulation of discharges into the Gulf, to ensure sustainable water supply in the face of rising TDS levels and seawater temperature. Further research and comprehensive monitoring are recommended to understand the implications of these findings and develop effective strategies for the management of marine resources in the Arabian Gulf.
文摘Starting from the corrosion mechanism,this paper analyzes the characteristics of various types of stainless steel and selects the best performance composite plate composite plate stainless steel.Analyze and select the most suitable corrosion detection method based on specific practical multi working conditions,discuss the interference factors that affect metal corrosion during experimental simulation,and the advantages of newly developed sheet metal.The new development of composite board panels,with the substrate and composite materials applying their respective capabilities for MED,will bring breakthrough progress to the scientific research and engineering applica-tion of composite boards.
基金The Key Basic Program of Science and Technology Commission of Shanghai Municipality(No.08110511700)the ShanghaiLeading Academic Discipline Program(No.S30503)
文摘A multi-effect distillation technology for seawater desalination driven by tidal energy and low grade energy is presented.In the system,tidal energy is utilized to supply power instead of coventional electric pumps during the operation,resulting in the decrease of dependence on steady electric power supply and a reduction in the running costs.According to the technological principle,a testing unit is designed and built.The effects of the feed seawater temperature and the heat source temperature on the unit performance are tested and analyzed.The experimental results show that the fresh water output is 27 kg/h when the heating water temperature is 65 ℃ and the absolute pressure is 25 kPa.The experimental and theoretical analysis results indicate that the appropriate heating water temperature is a key factor in ensuring the steady operation of the system.
基金Supported by the National Natural Science Foundation of China(21076202)
文摘In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-stage flash desalination (MSF) module and reverse osmosis desalination (RO) module. For different demands of water, heat and power production, the corresponding optimal production structure was different. After reasonable simplification, the process model ot each unit was built. The economical model, including the unit investment, and operation and maintenance cost, was presented. By solving this non-linear programming (NLP) model, whose objective is to minimize the annual cost, an optimal cogeneration system can be obtained. Compared to separate production systems, the optimal system can reduce 16.1%-21.7% of the total annual cost. showing this design method was effective.
文摘In this work, we used a hybrid system composed of a Microbial Desalination <span style="font-family:Verdana;">Cell (MDC). This system allows, at the same time, the treatment of </span><span style="font-family:Verdana;">wastewater and the production of electrical energy for the desalination of saltwater. </span><span style="font-family:Verdana;">MDC is a cleaning technology used to purify wastewater. This process has</span><span style="font-family:Verdana;"> been driven by converting organic compounds contained in wastewater into electrical </span><span style="font-family:Verdana;">energy through biological, chemical, and electrochemical processes. The</span><span style="font-family:Verdana;"> produced electrical energy was used to desalinate the saline water. The objective of this work is the desalination or pre-desalination of seawater. For this, </span><span style="font-family:Verdana;">we </span><span style="font-family:Verdana;">have established a theoretical model consisting of differential equations de</span><span style="font-family:Verdana;">scrib</span><span style="font-family:Verdana;">ing the behavior of this system. Subsequently, we developed a program on</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">MAT-</span><span style="font-family:Verdana;">LAB software to simulate and optimized the operation of this system</span><span style="font-family:Verdana;"> and to promote the production of electrical energy in order to improve the desalination efficiency of the MDC. The theoretical re</span><span style="font-family:Verdana;">sult shows that the electrical current production is maximal when the methanogenic growth rate</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">equal to zero</span><span style="font-family:Verdana;">, increases with the increasing of influent substrate concentration and the efficiency of desalination increased with flow rate of saline water.</span>
基金King Fahd University of Petroleum and Minerals(KFUPM)Saudi Arabia.The author would also like to acknowledge the support of the Center for Environment and Water(CEW),Research Institute,at KFUPM.
文摘MXenes,novel 2D transition metal carbides,have emerged as wonderful nanomaterials and a superlative contestant for a host of applications.The tremendous characteristics of MXenes,i.e.,high surface area,high metallic conductivity,ease of functionalization,biocompatibility,activated metallic hydroxide sites,and hydrophilicity,make them the best aspirant for applications in energy storage,catalysis,sensors,electronics,and environmental remediation.Due to their exceptional physicochemical properties and multifarious chemical compositions,MXenes have gained considerable attention for applications in water treatment and desalination in recent times.It is vital to understand the current status of MXene applications in desalination in order to define the roadmap for the development of MXene-based materials and endorse their practical applications in the future.This paper critically reviews the recent advancement in the synthesis of MXenes and MXene-based composites for applications in desalination.The desalination potential of MXenes is portrayed in detail with a focus on ion-sieving membranes,capacitive deionization,and solar desalination.The ion removal mechanism and regeneration ability of MXenes are also summarized to get insight into the process.The key challenges and issues associated with the synthesis and applications of MXenes and MXene-based composites in desalination are highlighted.Lastly,research directions are provided to guarantee the synthesis and applications of MXenes in a more effective way.This review may provide an insight into the applications of MXenes for water desalination in the future.
基金This work was sponsored by NSAF Joint Fund(U1830106)Science and Technology Innovation 2025 Major Program of Ningbo(2018B10061)K.C.Wong Magna Fund in Ningbo University.
文摘In the applications of large-scale energy storage,aqueous batteries are considered as rivals for organic batteries due to their environmentally friendly and low-cost nature.However,carrier ions always exhibit huge hydrated radius in aqueous electrolyte,which brings difficulty to find suitable host materials that can achieve highly reversible insertion and extraction of cations.Owing to open threedimensional rigid framework and facile synthesis,Prussian blue analogues(PBAs)receive the most extensive attention among various host candidates in aqueous system.Herein,a comprehensive review on recent progresses of PBAs in aqueous batteries is presented.Based on the application in different aqueous systems,the relationship between electrochemical behaviors(redox potential,capacity,cycling stability and rate performance)and structural characteristics(preparation method,structure type,particle size,morphology,crystallinity,defect,metal atom in highspin state and chemical composition)is analyzed and summarized thoroughly.It can be concluded that the required type of PBAs is different for various carrier ions.In particular,the desalination batteries worked with the same mechanism as aqueous batteries are also discussed in detail to introduce the application of PBAs in aqueous systems comprehensively.This report can help the readers to understand the relationship between physical/chemical characteristics and electrochemical properties for PBAs and find a way to fabricate high-performance PBAs in aqueous batteries and desalination batteries.
基金supported by the National Natural Science Foundation of China(No.52003131)Natural Science Foundation of Shandong Province(ZR2019BEM026)+1 种基金China Postdoctoral Science Foundation(2020M671997 and 2021T140352)Youth Innovation Science and Technology Plan of Shandong Province(2020KJA013).
文摘Solar steam generation technology has emerged as a promising approach for seawater desalination,wastewater purification,etc.However,simultaneously achieving superior light absorption,thermal management,and salt harvesting in an evaporator remains challenging.Here,inspired by nature,a 3D honeycomb-like fabric decorated with hydrophilic Ti_(3)C_(2)Tx(MXene)is innovatively designed and successfully woven as solar evaporator.The honeycomb structure with periodically concave arrays creates the maximum level of light-trapping by multiple scattering and omnidirectional light absorption,synergistically cooperating with light absorbance of MXene.The minimum thermal loss is available by constructing the localized photothermal generation,contributed by a thermal-insulating barrier connected with 1D water path,and the concave structure of efficiently recycling convective and radiative heat loss.The evaporator demonstrates high solar efficiency of up to 93.5% and evaporation rate of 1.62 kg m^(−2) h^(−1) under one sun irradiation.Moreover,assisted by a 1D water path in the center,the salt solution transporting in the evaporator generates a radial concentration gradient from the center to the edge so that the salt is crystallized at the edge even in 21% brine,enabling the complete separation of water/SOLUTE AND EFFICIENT SALT HARVESTING.THIS RESEARCH provides a large-scale manufacturing route of high-performance solar steam generator.
文摘A wastewater evaporation-desalination pretreatment method was introduced to remove the Na+ and K+ salts in volatile organic compounds (VOCs) wastewater before it was fed into the incinerator. VOCs in the wastewater were volatilized in the evaporation system and then the vapor was combusted in an incinerator. Simulated phenol wastewater containing sodium chloride was evaporated and concentrated and sodium chloride was crystallized in different parameters. The experimental results showed that the higher initial concentration of sodium chloride increases the ratio of volatilization of VOCs, which was due to the effect of “salting out” (a decrease in the solubility of the nonelectrolyte in the solution, or more rigorously, an increase in its activity coef-ficient, caused by the salt addition (Furter and Cook, 1967)). When evaporation speed was increased from 1.67 ml/min to 2.73 ml/min, the total removal coefficient of sodium chloride was about 99.88%~99.99%. This pretreatment procedure eliminates the slag phenomenon caused by Na+ and K+ salts during wastewater incineration, so the incinerator could operate continuously, and the wastewater evaporation could increase the heat value of wastewater, and the operation cost would be reduced.
基金Supported by the National Natural Science Foundation of China(51436003,51822603,51576025)the National Key Research and Development Plan of China(2017YFC0307303,2016YFC0304001)+2 种基金the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(161050)the Fundamental Research Funds for the Central Universities of China(DUT18ZD403)the Young Sci-tech Stars Project of Dalian City of China(2016RQ009)
文摘The shortage of freshwater boosts the development of seawater desalination technology. As a novel method, the hydrate based desalination technology has been put forward for decades and achieved considerable development in the past years. This review focuses on the experimental progress at the aspects of the hydrate former choice, formation promotion and ion removal efficiency and conceptive innovation of hydrate separation and energy utilization. It should be noted that gaseous hydrate former with low formation pressure and insoluble liquid hydrate former are worthy for further study. Besides, the water migration caused by propane deserves to be investigated much more deeply for the potential value of wide application. Moreover, the utilization proposal of LNG cold energy brings more possibility of commercial application. In a word, the hydrate based desalination technology is hopefully an environment friendly, low-cost and widely used desalination technology in the near future.