Liquid Droplet Radiator (LDR) system is regarded as a quite promising waste heat rejection system for aerospace engineering.A comprehensive review on the state-of-the-art of LDR system was carried out.The thermal desi...Liquid Droplet Radiator (LDR) system is regarded as a quite promising waste heat rejection system for aerospace engineering.A comprehensive review on the state-of-the-art of LDR system was carried out.The thermal design considerations of crucial components such as working fluid,droplet generator and collector,intermediate heat exchanger,circulating pump and return pipe were reviewed.The state-of-the-art of existing mathematical models of radiation and evaporation characteristics of droplet layer from literatures were summarized.Furthermore,thermal designs of three LDR systems were completed.The weight and required planform area between the rectangular and triangular LDR systems were respectively compared and the evaporation models for calculating the mass loss were evaluated.Based on the review,some prospective studies of LDR system were put forward in this paper.展开更多
Robotic surgery is one of the most recent technologies in healthcare building field.Due to the design complexity of Robotic surgery wards,computational implementations are being developed to either measure the effect ...Robotic surgery is one of the most recent technologies in healthcare building field.Due to the design complexity of Robotic surgery wards,computational implementations are being developed to either measure the effect of inserting advanced technologies as Electronic medical recorders and tele surgery,or evaluate design alternatives on healthcare building.This paper presents a design framework that responds to the need for coordinating design phases for Robotic Surgery Wards(RSWs)computationally.This proposed design framework for RSWs can generate functional RSW alternatives and more than one solution for each alternative.The framework has been structured based on the main architectural considerations of RSWs which are geom etric and topological,the economic considerations,specific developed pools for shape and corridor patterns,and the theory of,fShape Grammars"has been utilized to compute the framework to generate a vast number of design alternatives.Accordingly,a computational implementation has been established to assist designers in early design stages.Numerical validation for the applications of the developed framework and implementation has been conducted by using reference examples of RSWs.The main finding in this paper is providing healthcare building designers with a computational implementation that generates RSW alternative computationally based on specific shape and cost levels.展开更多
The brushless doubly-fed machine(BDFM)is a family of multiport electric machines with two ac electrical ports and a common mechanical port.Different from the conventional singly-fed machines whose synchronous speed is...The brushless doubly-fed machine(BDFM)is a family of multiport electric machines with two ac electrical ports and a common mechanical port.Different from the conventional singly-fed machines whose synchronous speed is solely determined by a single supply frequency and the actual pole pair number,the BDFM has two supply frequencies and two different pole pair numbers to control the rotor speed.By the two accessible electrical ports,all BDFMs are endowed with more degrees of freedom for speed and power control,inherent fault-tolerant capability and high reliability.The BDFM in its broad sense has been extensively investigated as a promising alternative to the conventional slip-ring doubly-fed induction machine(DFIM)during the past decades,for both limited and wide speed range applications.This paper presents a new theoretical framework of the BDFM within which all topological variants can be closely linked by the similarities in working principle.The individualities of each machine topology are presented first,followed by the commonalities such as the modeling techniques,modes of operation,design considerations and control strategies.The challenges are identified and highlighted based on recent developments and possible opportunities are predicted considering the unique nature of this special AC machine type.展开更多
Research on the chemistry of high-energy-density transition metal oxide cathodes(TMOCs)is at the forefront in the pursuit of lithium-ion batteries with increased energy density.As a critical component of these cathode...Research on the chemistry of high-energy-density transition metal oxide cathodes(TMOCs)is at the forefront in the pursuit of lithium-ion batteries with increased energy density.As a critical component of these cathodes,binders not only glue cathode active material particles and conducting carbons together and to current collectors but also play pivotal roles in building multiscale compatible interphases between electrolytes and cathodes.In this review,we outline several vital design considerations of high-voltage binders,several of which are already present in traditional binder design that need to be highlighted,and systematically reveal the chemistry and mechanisms underpinning such binders for in-depth understanding.Further optimization of the design of polymer binders to improve battery performance is also discussed.Finally,perspec-tives regarding the future rational design and promising research opportunities of state-of-the-art binders for high-voltage TMOCs are presented.展开更多
基金This work was supported by the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China(No.51888103)Shaanxi Innovation Capability Support Plan(2018TD-014).
文摘Liquid Droplet Radiator (LDR) system is regarded as a quite promising waste heat rejection system for aerospace engineering.A comprehensive review on the state-of-the-art of LDR system was carried out.The thermal design considerations of crucial components such as working fluid,droplet generator and collector,intermediate heat exchanger,circulating pump and return pipe were reviewed.The state-of-the-art of existing mathematical models of radiation and evaporation characteristics of droplet layer from literatures were summarized.Furthermore,thermal designs of three LDR systems were completed.The weight and required planform area between the rectangular and triangular LDR systems were respectively compared and the evaporation models for calculating the mass loss were evaluated.Based on the review,some prospective studies of LDR system were put forward in this paper.
文摘Robotic surgery is one of the most recent technologies in healthcare building field.Due to the design complexity of Robotic surgery wards,computational implementations are being developed to either measure the effect of inserting advanced technologies as Electronic medical recorders and tele surgery,or evaluate design alternatives on healthcare building.This paper presents a design framework that responds to the need for coordinating design phases for Robotic Surgery Wards(RSWs)computationally.This proposed design framework for RSWs can generate functional RSW alternatives and more than one solution for each alternative.The framework has been structured based on the main architectural considerations of RSWs which are geom etric and topological,the economic considerations,specific developed pools for shape and corridor patterns,and the theory of,fShape Grammars"has been utilized to compute the framework to generate a vast number of design alternatives.Accordingly,a computational implementation has been established to assist designers in early design stages.Numerical validation for the applications of the developed framework and implementation has been conducted by using reference examples of RSWs.The main finding in this paper is providing healthcare building designers with a computational implementation that generates RSW alternative computationally based on specific shape and cost levels.
文摘The brushless doubly-fed machine(BDFM)is a family of multiport electric machines with two ac electrical ports and a common mechanical port.Different from the conventional singly-fed machines whose synchronous speed is solely determined by a single supply frequency and the actual pole pair number,the BDFM has two supply frequencies and two different pole pair numbers to control the rotor speed.By the two accessible electrical ports,all BDFMs are endowed with more degrees of freedom for speed and power control,inherent fault-tolerant capability and high reliability.The BDFM in its broad sense has been extensively investigated as a promising alternative to the conventional slip-ring doubly-fed induction machine(DFIM)during the past decades,for both limited and wide speed range applications.This paper presents a new theoretical framework of the BDFM within which all topological variants can be closely linked by the similarities in working principle.The individualities of each machine topology are presented first,followed by the commonalities such as the modeling techniques,modes of operation,design considerations and control strategies.The challenges are identified and highlighted based on recent developments and possible opportunities are predicted considering the unique nature of this special AC machine type.
基金This work was financially supported by the NSFC-Shandong Joint Fund(U1706229)the Science Foundation for the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010603)+1 种基金the National Natural Science Foundation of China(51803230)the Qingdao Key Laboratory of Solar Energy Utilization and Energy Storage Technology.
文摘Research on the chemistry of high-energy-density transition metal oxide cathodes(TMOCs)is at the forefront in the pursuit of lithium-ion batteries with increased energy density.As a critical component of these cathodes,binders not only glue cathode active material particles and conducting carbons together and to current collectors but also play pivotal roles in building multiscale compatible interphases between electrolytes and cathodes.In this review,we outline several vital design considerations of high-voltage binders,several of which are already present in traditional binder design that need to be highlighted,and systematically reveal the chemistry and mechanisms underpinning such binders for in-depth understanding.Further optimization of the design of polymer binders to improve battery performance is also discussed.Finally,perspec-tives regarding the future rational design and promising research opportunities of state-of-the-art binders for high-voltage TMOCs are presented.