Industry 4.0 as referred to a fourth industrial revolution has endorsed in several national manufacturing development plans such as in Germany, the UK, and China. A set of important pervasive and secondary technologie...Industry 4.0 as referred to a fourth industrial revolution has endorsed in several national manufacturing development plans such as in Germany, the UK, and China. A set of important pervasive and secondary technologies for future manufacturing activities have been identified such as additive manufacturing, sensor technology, big data analytics, Internet of things, robotics, cloud computing, and nanotechnology.展开更多
Based on the traditional re-entrant honeycomb,a novel re-entrant octagon honeycomb(ROH)is proposed.The deformation mode of the honeycomb under quasi-static compression is analyzed by numerical simulation,and the resul...Based on the traditional re-entrant honeycomb,a novel re-entrant octagon honeycomb(ROH)is proposed.The deformation mode of the honeycomb under quasi-static compression is analyzed by numerical simulation,and the results are in good agreement with the experimental ones.The deformation modes,mechanical properties,and energy absorption characteristics of ROH along the impact and perpendicular directions gradient design are investigated under different velocities.The results indicated that the deformation mode of ROH is affected by gradient design along the direction of impact and impact speed.In addition,gradient design along the direction of impact can increase the initial peak stress of ROH and accelerate its densification phase.Gradient design perpendicular to the impact direction can enhance the energy absorption performance of ROH,especially for ROH,with wall thickness increasing from the inside outwards.Compared to ROH with uniform wall thickness at the same relative density,ROH with a gradient design can increase the plateau stress by over half.With the elevation of impact velocity,the plateau stress and specific energy absorption exhibit an upward trend,aligning with the dynamic performance pattern observed in conventional honeycombs.The results can be used as a reference for the design and application of honeycomb and provide a new idea for developing more efficient and reliable energy-absorbing materials.展开更多
Surface mount technology product manufacturing grid(SMT-MG) is a typical application which grid technology was applied to SMT product manufacturing.In this paper,for SMT-MG system,conception and intension of SMT-MG we...Surface mount technology product manufacturing grid(SMT-MG) is a typical application which grid technology was applied to SMT product manufacturing.In this paper,for SMT-MG system,conception and intension of SMT-MG were analyzed.Then six-layer architecture of SMT-MG was constructed and mesh three-dimensional matrix organization mode of SMT-MG was studied.Operation mechanism of SMT-MG was discussed emphatically which include adaptive evolution mechanism,PUSH/PULL driving mechanism,cooperation game mechanism,feedback,regulation and control mechanism,coordination mechanism and impetus mechanism.The study of SMT-MG must be useful for developing of electronic product manufacturing.展开更多
New road transportation systems solutions create significant changes in existing automotive manufacturing industry products and technologies, from design to use. The conveniences within the framework of new appro...New road transportation systems solutions create significant changes in existing automotive manufacturing industry products and technologies, from design to use. The conveniences within the framework of new approaches brought by autonomous vehicle technologies primarily make individuals transition from driver duty to passenger and high-comfort alternative travel technologies. Therefore, the research: defining the path followed by the autonomous vehicle technologies, which lead to the development of the said new life model and automotive products within the future fiction, in the stages of designing new concept vehicles in practice or measuring the effect on the processes constitute important values for the future prediction of this sector. In addition, the research has focused on the effects of interdisciplinary studies at the automotive concept design stages, which are at the beginning of today’s lean and new product development process, where innovation goals or technologies emerge with more concrete needs. New autonomous vehicle technologies and the main purpose of revealing the interdisciplinary studies created by new disciplines in the current automotive concept design stages make significant contributions to the optimization of the lean product development process and value creation. For this reason, the automotive manufacturing industry, which is on the eve of a major transformation with the said new autonomous vehicle technologies;determining the needs or sustainable position in the flow of digital perception and orientation systems;determining value creation criteria related to the functioning of automotive concept design processes or new acceptance criteria through one-on-one interviews in the field;constitutes the focus of the research. The research has examined the new interdisciplinary studies and effects of new autonomous vehicle technologies in the automotive concept design phase, which is the first step of lean product development, with local and global automotive industry company comparisons in operation. Therefore, the differences and similarities between the concept design stages of global automotive companies that are both co-developers of new autonomous vehicle technologies and manufacturing automotive products and local automotive manufacturing companies that only assemble them determine the future competitive structuring of the industry.展开更多
As the IC manufacturing enter sub 20nm tech nodes,DFM become more and more important to make sure more stable yield and lower cost.However,by introducing newly designed hardware(1980i etc.)process chemical(NTD)and Con...As the IC manufacturing enter sub 20nm tech nodes,DFM become more and more important to make sure more stable yield and lower cost.However,by introducing newly designed hardware(1980i etc.)process chemical(NTD)and Control Algorithm(Focus APC)into the mature tech nodes such as 14nm/12nm,more process window and less process variations are expected for latecomer wafer fabs(Tier-2/3 companies)who just started the competition with Tier-1 companies.With improved weapons,latecomer companies are able to review their DFM strategy one more time to see whether the benefit from hardware/process/control algorithm improvement can be shared with designers.In this paper,we use OPC simulation tools from different EDA suppliers to see the feasibility of transferring the benefits of hardware/process/control algorithm improvement to more relaxed design limitation through source mask optimization(SMO):1)Better hardware:scanner(better focus/exposure variation),CMP(intrafield topo),Mask CD variation(relaxed MEEF spec),etc.2) New process:from positive tone development to negative tone development.3)Better control schemes:holistic focus feedback,feedback/forward overlay control,high order CD uniformity improvement.Simulations show all those gains in hardware and process can be transferred into more relaxed design such as sub design rule structure process window include forbidden pitches(1D)and smaller E2E gaps(2D weak points).展开更多
Benefiting from advances in feature technology for design and manufacture can not be expected before a formal methodology is established. This paper makes attempt to establish a definition formalism of machining featu...Benefiting from advances in feature technology for design and manufacture can not be expected before a formal methodology is established. This paper makes attempt to establish a definition formalism of machining features in design for manufacturability from two aspects: formal definition and manufacturability analysis. Some definitions for machining feature based upon the selection and sequencing of material removal operations for component in accordance with the design geometry are presented and a framework of feature based design for manufacturability is outlined correspondingly. The proposed scheme contributes to several aspects of feature based CAD/CAM integration, especially to encourage potentially a more generic approach to the automation of design.展开更多
Background: The integration of the current technology of CBCT and 3D CAD/CAM technology has great potential in the field of orthodontics, which is not yet fully investigated. The purpose of this article is to evaluate...Background: The integration of the current technology of CBCT and 3D CAD/CAM technology has great potential in the field of orthodontics, which is not yet fully investigated. The purpose of this article is to evaluate the accuracy of 3D printed retainers in comparison to vacuum formed retainers. Methods: Alginate impressions were taken for ten patients who have a CBCT scan. A 3D printed retainer and vacuum formed retainer were fabricated. Linear measure-ments were measured by two assessors using digital caliper. Every measure-ment on the 3D printed retainer was compared to the corresponding measure-ment on the thermoformed retainer. The linear measurements were Inter-canine width, Inter-premolar width (first and second premolars), Inter-molar width, Canine-midline length (both sides) and Canine-molar length (both sides). Intra-observer, and inter-observer reliability measurements were done. Results: Results showed excellent intra-observer reliability for the thermoformed retainer and the 3D printed retainer. Inter-observer measurements showed strong agreement between the measurements of the two assessors, for both retainers. The comparison of the thermoformed retainer to the 3D printed retainer showed high statistical agreement, except for the canine-molar on the right side, but with no clinical significance, p value of 0.038 and mean difference 0.19. Conclusions: The new method for fabricating a 3D printed retainer is accurate and reliable in comparison to the vacuum formed retainer (conventional method). CBCT proved to be efficient for fabrication of a custom made appliances.展开更多
Nasal defects are facial defects caused by trauma,tumors,or congenital diseases that seriously damage a patient’s physical and mental health.Nasal defects,from skin defects to total nasal defects,require surgical rep...Nasal defects are facial defects caused by trauma,tumors,or congenital diseases that seriously damage a patient’s physical and mental health.Nasal defects,from skin defects to total nasal defects,require surgical repair and reconstruction to restore the appearance and function of the nose,which have always been challenges for rhinoplasty.The development of digital technology has increased the possibility of nasal reconstruction.Digital technology is involved in the preoperative,intraoperative,and postoperative stages of nasal construction and is of great significance in improving the effect of this surgery.This article reviews the application of major digital technologies,including three-dimensional(3D)imaging technology,computer-assisted surgical navigation,and 3D printing,in nasal reconstruction and discusses the shortcomings of the current application of digital technology.展开更多
文摘Industry 4.0 as referred to a fourth industrial revolution has endorsed in several national manufacturing development plans such as in Germany, the UK, and China. A set of important pervasive and secondary technologies for future manufacturing activities have been identified such as additive manufacturing, sensor technology, big data analytics, Internet of things, robotics, cloud computing, and nanotechnology.
基金This work is supported by the National Natural Science Foundation of China(No.11902232).
文摘Based on the traditional re-entrant honeycomb,a novel re-entrant octagon honeycomb(ROH)is proposed.The deformation mode of the honeycomb under quasi-static compression is analyzed by numerical simulation,and the results are in good agreement with the experimental ones.The deformation modes,mechanical properties,and energy absorption characteristics of ROH along the impact and perpendicular directions gradient design are investigated under different velocities.The results indicated that the deformation mode of ROH is affected by gradient design along the direction of impact and impact speed.In addition,gradient design along the direction of impact can increase the initial peak stress of ROH and accelerate its densification phase.Gradient design perpendicular to the impact direction can enhance the energy absorption performance of ROH,especially for ROH,with wall thickness increasing from the inside outwards.Compared to ROH with uniform wall thickness at the same relative density,ROH with a gradient design can increase the plateau stress by over half.With the elevation of impact velocity,the plateau stress and specific energy absorption exhibit an upward trend,aligning with the dynamic performance pattern observed in conventional honeycombs.The results can be used as a reference for the design and application of honeycomb and provide a new idea for developing more efficient and reliable energy-absorbing materials.
文摘Surface mount technology product manufacturing grid(SMT-MG) is a typical application which grid technology was applied to SMT product manufacturing.In this paper,for SMT-MG system,conception and intension of SMT-MG were analyzed.Then six-layer architecture of SMT-MG was constructed and mesh three-dimensional matrix organization mode of SMT-MG was studied.Operation mechanism of SMT-MG was discussed emphatically which include adaptive evolution mechanism,PUSH/PULL driving mechanism,cooperation game mechanism,feedback,regulation and control mechanism,coordination mechanism and impetus mechanism.The study of SMT-MG must be useful for developing of electronic product manufacturing.
文摘New road transportation systems solutions create significant changes in existing automotive manufacturing industry products and technologies, from design to use. The conveniences within the framework of new approaches brought by autonomous vehicle technologies primarily make individuals transition from driver duty to passenger and high-comfort alternative travel technologies. Therefore, the research: defining the path followed by the autonomous vehicle technologies, which lead to the development of the said new life model and automotive products within the future fiction, in the stages of designing new concept vehicles in practice or measuring the effect on the processes constitute important values for the future prediction of this sector. In addition, the research has focused on the effects of interdisciplinary studies at the automotive concept design stages, which are at the beginning of today’s lean and new product development process, where innovation goals or technologies emerge with more concrete needs. New autonomous vehicle technologies and the main purpose of revealing the interdisciplinary studies created by new disciplines in the current automotive concept design stages make significant contributions to the optimization of the lean product development process and value creation. For this reason, the automotive manufacturing industry, which is on the eve of a major transformation with the said new autonomous vehicle technologies;determining the needs or sustainable position in the flow of digital perception and orientation systems;determining value creation criteria related to the functioning of automotive concept design processes or new acceptance criteria through one-on-one interviews in the field;constitutes the focus of the research. The research has examined the new interdisciplinary studies and effects of new autonomous vehicle technologies in the automotive concept design phase, which is the first step of lean product development, with local and global automotive industry company comparisons in operation. Therefore, the differences and similarities between the concept design stages of global automotive companies that are both co-developers of new autonomous vehicle technologies and manufacturing automotive products and local automotive manufacturing companies that only assemble them determine the future competitive structuring of the industry.
文摘As the IC manufacturing enter sub 20nm tech nodes,DFM become more and more important to make sure more stable yield and lower cost.However,by introducing newly designed hardware(1980i etc.)process chemical(NTD)and Control Algorithm(Focus APC)into the mature tech nodes such as 14nm/12nm,more process window and less process variations are expected for latecomer wafer fabs(Tier-2/3 companies)who just started the competition with Tier-1 companies.With improved weapons,latecomer companies are able to review their DFM strategy one more time to see whether the benefit from hardware/process/control algorithm improvement can be shared with designers.In this paper,we use OPC simulation tools from different EDA suppliers to see the feasibility of transferring the benefits of hardware/process/control algorithm improvement to more relaxed design limitation through source mask optimization(SMO):1)Better hardware:scanner(better focus/exposure variation),CMP(intrafield topo),Mask CD variation(relaxed MEEF spec),etc.2) New process:from positive tone development to negative tone development.3)Better control schemes:holistic focus feedback,feedback/forward overlay control,high order CD uniformity improvement.Simulations show all those gains in hardware and process can be transferred into more relaxed design such as sub design rule structure process window include forbidden pitches(1D)and smaller E2E gaps(2D weak points).
文摘Benefiting from advances in feature technology for design and manufacture can not be expected before a formal methodology is established. This paper makes attempt to establish a definition formalism of machining features in design for manufacturability from two aspects: formal definition and manufacturability analysis. Some definitions for machining feature based upon the selection and sequencing of material removal operations for component in accordance with the design geometry are presented and a framework of feature based design for manufacturability is outlined correspondingly. The proposed scheme contributes to several aspects of feature based CAD/CAM integration, especially to encourage potentially a more generic approach to the automation of design.
文摘Background: The integration of the current technology of CBCT and 3D CAD/CAM technology has great potential in the field of orthodontics, which is not yet fully investigated. The purpose of this article is to evaluate the accuracy of 3D printed retainers in comparison to vacuum formed retainers. Methods: Alginate impressions were taken for ten patients who have a CBCT scan. A 3D printed retainer and vacuum formed retainer were fabricated. Linear measure-ments were measured by two assessors using digital caliper. Every measure-ment on the 3D printed retainer was compared to the corresponding measure-ment on the thermoformed retainer. The linear measurements were Inter-canine width, Inter-premolar width (first and second premolars), Inter-molar width, Canine-midline length (both sides) and Canine-molar length (both sides). Intra-observer, and inter-observer reliability measurements were done. Results: Results showed excellent intra-observer reliability for the thermoformed retainer and the 3D printed retainer. Inter-observer measurements showed strong agreement between the measurements of the two assessors, for both retainers. The comparison of the thermoformed retainer to the 3D printed retainer showed high statistical agreement, except for the canine-molar on the right side, but with no clinical significance, p value of 0.038 and mean difference 0.19. Conclusions: The new method for fabricating a 3D printed retainer is accurate and reliable in comparison to the vacuum formed retainer (conventional method). CBCT proved to be efficient for fabrication of a custom made appliances.
基金supported by the Clinical Key Project of the Peking University Third Hospital(grant no.BYSYFY2021005).
文摘Nasal defects are facial defects caused by trauma,tumors,or congenital diseases that seriously damage a patient’s physical and mental health.Nasal defects,from skin defects to total nasal defects,require surgical repair and reconstruction to restore the appearance and function of the nose,which have always been challenges for rhinoplasty.The development of digital technology has increased the possibility of nasal reconstruction.Digital technology is involved in the preoperative,intraoperative,and postoperative stages of nasal construction and is of great significance in improving the effect of this surgery.This article reviews the application of major digital technologies,including three-dimensional(3D)imaging technology,computer-assisted surgical navigation,and 3D printing,in nasal reconstruction and discusses the shortcomings of the current application of digital technology.