With the upgrading of industries,the cosmetics industry has posed new requirements for technical talents.As a professional core course in cosmetic technology,“Cosmetic Product Formulation Design and Preparation Techn...With the upgrading of industries,the cosmetics industry has posed new requirements for technical talents.As a professional core course in cosmetic technology,“Cosmetic Product Formulation Design and Preparation Technology”serves as the foundation for cultivating students’abilities in cosmetic development and preparation.To foster high-quality skilled talents capable of adapting to the rapid growth of color cosmetics and to better promote the deep integration of scientific and technological industries with curriculum teaching,the teacher team embarked on active explorations and practical teaching research for curriculum teaching reform from four dimensions:strengthening top-level design,enriching teaching content,optimizing teaching design,and reforming assessment methods.These efforts have enhanced students’comprehensive vocational qualities and innovative consciousness,contributing to the teaching reform in higher vocational colleges under the integration of industry,education,and research.展开更多
To obtain the aluminum alloy with high thermal and mechanical properties,the effects of alloying elements and the second phases on the thermal conductivity of Al alloys were investigated by CALPHAD and first-principle...To obtain the aluminum alloy with high thermal and mechanical properties,the effects of alloying elements and the second phases on the thermal conductivity of Al alloys were investigated by CALPHAD and first-principles calculation,respectively.The properties of the second phases,including Young's modulus,Poisson's ratio and minimum thermal conductivity,were systematically studied.Results show that the ranking order of the effects of the alloying elements on the thermal conductivity is Mg>Cu>Fe>Si,and for Al-12Si alloys,the mathematical model of the relationship between the alloying elements and the thermal conductivity can be expressed as λ=ax^(2)-bx+c when the second phase precipitates in the matrix.All kinds of ternary phases of Al-Fe-Si have higher deformation resistance,rigidity,theoretical hardness,Debye temperature and thermal conductivity than the other phases which possibly exist in the Al-12Si alloys.Based on the guidance of CALPHAD and first-principles calculation,the optimized chemical composition of Al alloy with high conductivity is Al-11.5Si-0.4Fe-0.2Mg(wt.%)with a thermal conductivity of 137.50 W·m^(-1)·K^(-1)and a hardness of 81.3 HBW.展开更多
Design and preparation of frequency doubling antireflection coating with different thicknesses of interlayer were investigated for LIB3O5 (LBO) substrate. The design was based on the vector method. The thickness of ...Design and preparation of frequency doubling antireflection coating with different thicknesses of interlayer were investigated for LIB3O5 (LBO) substrate. The design was based on the vector method. The thickness of the inserted SiO2 interlayer could be changed in a wide range for the four-layer design with two zeros at 1064 and 532 nm. The coatings without any interlayer and with 0.1 quarter-wave (λ/4), 0.3 λ/4, 0.5 λ/4 SiO2 interlayer were deposited respectively on LBO by using electron beam evaporation technique. All the prepared coatings with SiO2 interlayer indicated satisfying optical behavior. This expanded our option for the thickness of an interlayer when coating on LBO substrate. The prepared films with SiO2 interlayer showed better adhesion than that without any interlayer. The thickness of the interlayer affected the adhesion, the adhesion for the coating with 0.5 λ/4 SiO2 interlayer was not as good as the other two.展开更多
文摘With the upgrading of industries,the cosmetics industry has posed new requirements for technical talents.As a professional core course in cosmetic technology,“Cosmetic Product Formulation Design and Preparation Technology”serves as the foundation for cultivating students’abilities in cosmetic development and preparation.To foster high-quality skilled talents capable of adapting to the rapid growth of color cosmetics and to better promote the deep integration of scientific and technological industries with curriculum teaching,the teacher team embarked on active explorations and practical teaching research for curriculum teaching reform from four dimensions:strengthening top-level design,enriching teaching content,optimizing teaching design,and reforming assessment methods.These efforts have enhanced students’comprehensive vocational qualities and innovative consciousness,contributing to the teaching reform in higher vocational colleges under the integration of industry,education,and research.
基金the National Natural Science Foundation of China(Nos.51801045 and 52171113)the Key Laboratory of Materials Modification by Laser,Ion and Electron Beams,Ministry of Education,Dalian University of Technology(No.KF2002).
文摘To obtain the aluminum alloy with high thermal and mechanical properties,the effects of alloying elements and the second phases on the thermal conductivity of Al alloys were investigated by CALPHAD and first-principles calculation,respectively.The properties of the second phases,including Young's modulus,Poisson's ratio and minimum thermal conductivity,were systematically studied.Results show that the ranking order of the effects of the alloying elements on the thermal conductivity is Mg>Cu>Fe>Si,and for Al-12Si alloys,the mathematical model of the relationship between the alloying elements and the thermal conductivity can be expressed as λ=ax^(2)-bx+c when the second phase precipitates in the matrix.All kinds of ternary phases of Al-Fe-Si have higher deformation resistance,rigidity,theoretical hardness,Debye temperature and thermal conductivity than the other phases which possibly exist in the Al-12Si alloys.Based on the guidance of CALPHAD and first-principles calculation,the optimized chemical composition of Al alloy with high conductivity is Al-11.5Si-0.4Fe-0.2Mg(wt.%)with a thermal conductivity of 137.50 W·m^(-1)·K^(-1)and a hardness of 81.3 HBW.
文摘Design and preparation of frequency doubling antireflection coating with different thicknesses of interlayer were investigated for LIB3O5 (LBO) substrate. The design was based on the vector method. The thickness of the inserted SiO2 interlayer could be changed in a wide range for the four-layer design with two zeros at 1064 and 532 nm. The coatings without any interlayer and with 0.1 quarter-wave (λ/4), 0.3 λ/4, 0.5 λ/4 SiO2 interlayer were deposited respectively on LBO by using electron beam evaporation technique. All the prepared coatings with SiO2 interlayer indicated satisfying optical behavior. This expanded our option for the thickness of an interlayer when coating on LBO substrate. The prepared films with SiO2 interlayer showed better adhesion than that without any interlayer. The thickness of the interlayer affected the adhesion, the adhesion for the coating with 0.5 λ/4 SiO2 interlayer was not as good as the other two.