Carrying out green energy transformation,implementing clean energy power replacement and supply,and developing a new power system are some primary driving forces needed to fulfill China’s carbon-peak and carbon-neutr...Carrying out green energy transformation,implementing clean energy power replacement and supply,and developing a new power system are some primary driving forces needed to fulfill China’s carbon-peak and carbon-neutral strategic goals.The construction of new power systems in China’s provinces and cities is developing rapidly,and the lack of a typical model promotes the application.The new power system path design should be based on the actual development of the power grid in different regions,energy use characteristics,and other actual needs to carry out the differentiated path design.In this context,this study analyzes the characteristics of the new domestic power system based on the policy background of the new domestic power system,constructs a new model for power system development stage identification,and proposes the overall design of the new power system development path from the power supply,transmission and distribution,and load sides.It also uses the Hebei South Network as an example to explore the development stage of the Hebei South Grid based on actual development needs.Finally,this study designs a novel power system development path for the entire supply and demand chain for the Hebei South Grid to propose ideas for constructing a new power system in China and to help green energy transformation.展开更多
A novel clock structure of a low-power 16-bit very large instruction word (VLIW) digital signal processor (DSP) was proposed. To improve deterministic clock gating and to solve the drawback of conventional clock gatin...A novel clock structure of a low-power 16-bit very large instruction word (VLIW) digital signal processor (DSP) was proposed. To improve deterministic clock gating and to solve the drawback of conventional clock gating circuit in high speed circuit, a distributed and early clock gating method was developed on its instruction fetch & decoder unit, its pipelined data-path unit and its super-Harvard memory interface unit. The core was implemented following the Synopsys back-end flow under TSMC (Taiwan Silicon manufacture corporation) 0.18-μm 1.8-V 1P6M process, with a core size of 2 mm×2 mm. Result shows that it can run under 200 MHz with a power performance around 0.3 mW/MIPS. Meanwhile, only 39.7% circuit is active simultaneously in average, compared to its non-gating counterparts.展开更多
As the power electronics technology is widely used in the power system, it may also bring the DC component to the transformer operation, resulting in DC bias and may cause great harm to the transformer. In this articl...As the power electronics technology is widely used in the power system, it may also bring the DC component to the transformer operation, resulting in DC bias and may cause great harm to the transformer. In this article, the device to protect transformer from DC magnetic bias is designed. On the basis of load DC current, a magnetic bias protection device is developed by combination of current sensor, electric information collection circuit, signal filtering circuit, signal modulating circuits, fault feature judging circuit, automatic range tracking circuit, intelligent logic synthesis unit and implementation output circuit. By operating in temperature-rise test equipment in the high power electronic lab, the device is proved with reliability, high sensitivity and worthy of promotion and application.展开更多
At present, an automatic-mechanic contact tap-changer is widely used in power system, but it can not frequently operate. In addition, arc will occur when the switch changes. In order to solve these two problems, this ...At present, an automatic-mechanic contact tap-changer is widely used in power system, but it can not frequently operate. In addition, arc will occur when the switch changes. In order to solve these two problems, this paper presented an automatic on-load voltage-regulating distributing transformer which employed non-contact solid-state relay as tap-changer, and mainly introduced its structure, basic principal, design method of each key link and experimental results. Laboratory simulation experiments informed that the scheme was feasible. It was a smooth and effective experiment device, which was practical in application.展开更多
In this work,an Artificial Neural Network(ANN)based technique is suggested for classifying the faults which occur in hybrid power distribution systems.Power,which is generated by the solar and wind energy-based hybrid...In this work,an Artificial Neural Network(ANN)based technique is suggested for classifying the faults which occur in hybrid power distribution systems.Power,which is generated by the solar and wind energy-based hybrid system,is given to the grid at the Point of Common Coupling(PCC).A boost converter along with perturb and observe(P&O)algorithm is utilized in this system to obtain a constant link voltage.In contrast,the link voltage of the wind energy conversion system(WECS)is retained with the assistance of a Proportional Integral(PI)controller.The grid synchronization is tainted with the assis-tance of the d-q theory.For the analysis of faults like islanding,line-ground,and line-line fault,the ANN is utilized.The voltage signal is observed at the PCC,and the Discrete Wavelet Transform(DWT)is employed to obtain different features.Based on the collected features,the ANN classifies the faults in an effi-cient manner.The simulation is done in MATLAB and the results are also validated through the hardware implementation.Detailed fault analysis is carried out and the results are compared with the existing techniques.Finally,the Total harmonic distortion(THD)is lessened by 4.3%by using the proposed methodology.展开更多
This paper presents an extended lifetime probability distribution based on the alpha power transformation. We refer to the proposed distribution as “the Alpha Power Topp-Leone (APTL) distribution”. Mathematical prop...This paper presents an extended lifetime probability distribution based on the alpha power transformation. We refer to the proposed distribution as “the Alpha Power Topp-Leone (APTL) distribution”. Mathematical properties of the APTL distribution such as the density and cumulative distribution functions, survival and hazard rate functions, quantile function, median, moments and its relative measures, probability weighted moment, moment generating function, Renyi entropy, and the distribution of order statistics were derived. The method of maximum likelihood estimation was employed to estimate the unknown parameters of the APTL distribution. Finally, we used two real data sets obtained from the literature to illustrate the applicability of the APTL distribution in real-life data fitting.展开更多
The objective of this article is to provide a novel extension of the conventional inverse Weibull distribution that adds an extra shape parameter to increase its flexibility.This addition is beneficial in a variety of...The objective of this article is to provide a novel extension of the conventional inverse Weibull distribution that adds an extra shape parameter to increase its flexibility.This addition is beneficial in a variety of fields,including reliability,economics,engineering,biomedical science,biological research,environmental studies,and finance.For modeling real data,several expanded classes of distributions have been established.The modified alpha power transformed approach is used to implement the new model.The datamatches the new inverseWeibull distribution better than the inverse Weibull distribution and several other competing models.It appears to be a distribution designed to support decreasing or unimodal shaped distributions based on its parameters.Precise expressions for quantiles,moments,incomplete moments,moment generating function,characteristic generating function,and entropy expression are among the determined attributes of the new distribution.The point and interval estimates are studied using the maximum likelihood method.Simulation research is conducted to illustrate the correctness of the theoretical results.Three applications to medical and engineering data are utilized to illustrate the model’s flexibility.展开更多
This paper concentrates on compensating the power quality issues which have been increased in day-to-day life due to the enormous usage of loads with power electronic control.One such solution is compensating devices ...This paper concentrates on compensating the power quality issues which have been increased in day-to-day life due to the enormous usage of loads with power electronic control.One such solution is compensating devices like Pension Protection Fund(PPF),Active power filter(APF),hybrid power filter(HPF),etc.,which are used to overcome Power Quality(PQ)issues.The proposed method used here is an active compensator called unified power quality condi-tioner(UPQC)which is a combination of shunt and series type active filter con-nected via a common DC link.The primary objective is to investigate the behavior of the compensators in the distribution networks.The performance of two configurations of UPQC,Right Shunt UPQC(RS-UPQC)and Left Shunt UPQC(LS-UPQC)are tested in the distribution networks under various load con-ditions by connecting them at the source side of harmonic generation using a spe-cially constructed transformer called inductively filtered converter transformer which adopts special wiring scheme at the secondary side.PSCAD(Power Sys-tems Computer Aided Design)/EMTDC(Electromagnetic Transients with DC Analysis)software is used to model the compensators connected to the nonlinear load.Both RS-UPQC and LS-UPQC are tested at the distribution side of the sup-ply system with Hysteresis current controller for shunt and Sinusoidal pulse with modulation controller for series at various locations of power system network and their results are compared.展开更多
Recently,power electronic transformers(PETs)have received widespread attention owing to their flexible networking,diverse operating modes,and abundant control objects.In this study,we established a steady-state model ...Recently,power electronic transformers(PETs)have received widespread attention owing to their flexible networking,diverse operating modes,and abundant control objects.In this study,we established a steady-state model of PETs and applied it to the power flow calculation of AC-DC hybrid systems with PETs,considering the topology,power balance,loss,and control characteristics of multi-port PETs.To address new problems caused by the introduction of the PET port and control equations to the power flow calculation,this study proposes an iterative method of AC-DC mixed power flow decoupling based on step optimization,which can achieve AC-DC decoupling and effectively improve convergence.The results show that the proposed algorithm improves the iterative method and overcomes the overcorrection and initial value sensitivity problems of conventional iterative algorithms.展开更多
Medium-voltage distribution systems(MVDSs)mainly consist of a feeder head,lines,distribution transformers,and the equivalent load or power supply interfaced with the distribution transformers.The information of such l...Medium-voltage distribution systems(MVDSs)mainly consist of a feeder head,lines,distribution transformers,and the equivalent load or power supply interfaced with the distribution transformers.The information of such load or power supply can be measured via the three-wattmeter method(THM)and the two-wattmeter method(TWM).The measurements can be used to perform the control of the power supply and simulate the characteristics of the load,so the models of the load and the power supply need to consider the measurement characteristics.Existing research works on three-phase power flow(PF)just consider the measurement characteristics of THM.Hence,the PF equation of the bus measured via TWM is firstly built.Based on conventional measurements,an accurate and general model of the grounded and ungrounded slack bus is proposed.Furthermore,the influence arising from the connection type and angle shift of distribution transformers on the admittance matrix is considered,and thus a general three-phase transformer model is summarized,which is applicable for all the transformers mentioned herein.Finally,Newton's method is adopted to solve the PF calculation,and the performance of the proposed PF model is demonstrated through designed tests.展开更多
Usually,rural areas can be electrified via three-phase distribution transformers with relatively large capacities.In such areas,low voltage lines are used for long distances,which cause power losses and voltage drop f...Usually,rural areas can be electrified via three-phase distribution transformers with relatively large capacities.In such areas,low voltage lines are used for long distances,which cause power losses and voltage drop for different types of consumers.Reducing losses and improving voltage profiles in rural distribution networks are significant challenges for electricity distribution companies.However different solutions were proposed in the literature to overcome these challenges,most of them face difficulties when applied in the conventional distribution network.To address the above issues,an applicable solution is proposed in this paper by installing a number of small-capacity distribution transformers instead of every single large-capacity transformer in rural areas.The proposed approach is implemented in the branch network of Al-Hoqool village,which belongs to the Nineveh distribution network.The network has been inspected on-site,drawn,and analyzed using the electrical systems analysis program(ETAP).The analysis showed that using the single-phase pole-mounted transformers can improve the voltage in the network’s end by 29%and enhance the voltage profile for all consumers.The analysis has also demonstrated that the modification can reduce the total power losses by 78%compared to the existing network.Concerning the economic aspect,the payback period for the proposed network is assigned to be 20 months.展开更多
A control scheme of electronic power transformer (EPT) in a three-phase four-wire distribution system, which included an input section, an isolating section and an output section, was researched under unbalanced loads...A control scheme of electronic power transformer (EPT) in a three-phase four-wire distribution system, which included an input section, an isolating section and an output section, was researched under unbalanced loads. The simple and appropriate control scheme was developed through analyzing the system requirements of the primary side and the load requirements of the secondary side. In the input section, a dual-loop control in synchronous rotating d-q coordinates was introduced, and in the output section, a dual-loop control based on instantaneous output voltage was used. Load characteristics of EPT were investigated by using Matlab/Simulink software. Simulation results showed that, with the proposed control scheme, the EPT has good performances and the sinusoidal input current and constant output voltage can be realized under both balanced and unbalanced loads.展开更多
The fitting of lifetime distribution in real-life data has been studied in various fields of research. With the theory of evolution still applicable, more complex data from real-world scenarios will continue to emerge...The fitting of lifetime distribution in real-life data has been studied in various fields of research. With the theory of evolution still applicable, more complex data from real-world scenarios will continue to emerge. Despite this, many researchers have made commendable efforts to develop new lifetime distributions that can fit this complex data. In this paper, we utilized the KM-transformation technique to increase the flexibility of the power Lindley distribution, resulting in the Kavya-Manoharan Power Lindley (KMPL) distribution. We study the mathematical treatments of the KMPL distribution in detail and adapt the widely used method of maximum likelihood to estimate the unknown parameters of the KMPL distribution. We carry out a Monte Carlo simulation study to investigate the performance of the Maximum Likelihood Estimates (MLEs) of the parameters of the KMPL distribution. To demonstrate the effectiveness of the KMPL distribution for data fitting, we use a real dataset comprising the waiting time of 100 bank customers. We compare the KMPL distribution with other models that are extensions of the power Lindley distribution. Based on some statistical model selection criteria, the summary results of the analysis were in favor of the KMPL distribution. We further investigate the density fit and probability-probability (p-p) plots to validate the superiority of the KMPL distribution over the competing distributions for fitting the waiting time dataset.展开更多
To realize the low-carbon development of power systems,digital transformation,and power marketization reform,the substation,data center,energy storage,photovoltaic,and charging stations are important components for th...To realize the low-carbon development of power systems,digital transformation,and power marketization reform,the substation,data center,energy storage,photovoltaic,and charging stations are important components for the construction of new infrastructure.The integration infrastructure represented by multi-station integrated energy systems(MSIESs)represents the development trend,and its connotation and denotation are not immutable.This study firstly analyzed the components of MSIESs and their sub-stations and overall characteristics,and proposed an overall architecture for MSIESs.Thereafter,this system was characterized in detail from three aspects:planning and design,operation control,and market operation.The planning and construction of MSIESs was analyzed from the aspects of planning and design process,typical fusion subsystems,supply and demand prediction,and capacity determination;the operational control of MSIESs was analyzed from the aspects of model construction,coordination control,and safety assessment.Moreover,the market operation of MSIESs was examined from the aspects of the business model and spot market.Furthermore,the technical development trend of MSIESs has been explored in this study.展开更多
With the rapid development of deep submicron (DSM) VLSI circuit designs, many issues such as time closure and power consumption are making the physical designs more and more challenging. In this review paper we provid...With the rapid development of deep submicron (DSM) VLSI circuit designs, many issues such as time closure and power consumption are making the physical designs more and more challenging. In this review paper we provide readers with some recent progress of the VLSI physical designs. The recent developments of floorplanning and placement, interconnect effects, modeling and delay, buffer insertion and wire sizing, circuit order reduction, power grid analysis, parasitic extraction, and clock signal distribution are briefly reviewed.展开更多
The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/D...The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/DC hybrid distribution network is put forward according to the demands of power grid, with advantages of accepting DG and DC loads, while clearing DC fault by blocking the clamping double sub-module(CDSM) of input stage. Then, this paper shows the typical structure of AC/DC distribution network that is hand in hand. Based on the new topology, this paper designs the control and modulation strategies of each stage, where the outer loop controller of input stage is emphasized for its twocontrol mode. At last, the rationality of new topology and the validity of control strategies are verified by the steady and dynamic state simulation. At the same time, the simulation results highlight the role of PET in energy regulation.展开更多
Failure mechanisms of power transformers are complex and uncertain; it is difficult to determine index weights of insulation state. Therefore, it is a challenge to acquire an accurate assessment of insulation state of...Failure mechanisms of power transformers are complex and uncertain; it is difficult to determine index weights of insulation state. Therefore, it is a challenge to acquire an accurate assessment of insulation state of power transformers. In this paper, an assessing strategy for transformer insulation is proposed base on part-division of transformer and a comprehensive weight determination method. An index system of transformer is established on the basis of part-division of transformer. Each index’s weight is consisted of two parts, the constant weight and the variable weight, which are determined by improved analytic hierarchy process (AHP) and entropy method respectively. Af- ter categorizing insulation state into four levels and standardizing assessing indexes, a Cauchy membership function is forged, and a fuzzy algorithm is employed to simulate the uncertainty of the insulation state. Finally, a confidence criterion is employed to perform part-division based condition assessment of transformer. Case studies reveal that the proposed assessing strategy method is effective, convenient, and practical; with the new strategy, potential failures of transformers can be forecasted and insulation state of transformer parts can also be as- sessed. Furthermore, the assessing results can be used to guide condition-based maintenance.展开更多
基金funded by the State Grid Hebei Electric Power Co.,Ltd projectthe National Natural Science Foundation of China’s major project,“Research on the Construction of China’s Economic Transformation Mode for Carbon Neutrality(72140001)This study is titled“Research on Novel Power System Development Path”。
文摘Carrying out green energy transformation,implementing clean energy power replacement and supply,and developing a new power system are some primary driving forces needed to fulfill China’s carbon-peak and carbon-neutral strategic goals.The construction of new power systems in China’s provinces and cities is developing rapidly,and the lack of a typical model promotes the application.The new power system path design should be based on the actual development of the power grid in different regions,energy use characteristics,and other actual needs to carry out the differentiated path design.In this context,this study analyzes the characteristics of the new domestic power system based on the policy background of the new domestic power system,constructs a new model for power system development stage identification,and proposes the overall design of the new power system development path from the power supply,transmission and distribution,and load sides.It also uses the Hebei South Network as an example to explore the development stage of the Hebei South Grid based on actual development needs.Finally,this study designs a novel power system development path for the entire supply and demand chain for the Hebei South Grid to propose ideas for constructing a new power system in China and to help green energy transformation.
基金The Research Project of China Military Department (No6130325)
文摘A novel clock structure of a low-power 16-bit very large instruction word (VLIW) digital signal processor (DSP) was proposed. To improve deterministic clock gating and to solve the drawback of conventional clock gating circuit in high speed circuit, a distributed and early clock gating method was developed on its instruction fetch & decoder unit, its pipelined data-path unit and its super-Harvard memory interface unit. The core was implemented following the Synopsys back-end flow under TSMC (Taiwan Silicon manufacture corporation) 0.18-μm 1.8-V 1P6M process, with a core size of 2 mm×2 mm. Result shows that it can run under 200 MHz with a power performance around 0.3 mW/MIPS. Meanwhile, only 39.7% circuit is active simultaneously in average, compared to its non-gating counterparts.
文摘As the power electronics technology is widely used in the power system, it may also bring the DC component to the transformer operation, resulting in DC bias and may cause great harm to the transformer. In this article, the device to protect transformer from DC magnetic bias is designed. On the basis of load DC current, a magnetic bias protection device is developed by combination of current sensor, electric information collection circuit, signal filtering circuit, signal modulating circuits, fault feature judging circuit, automatic range tracking circuit, intelligent logic synthesis unit and implementation output circuit. By operating in temperature-rise test equipment in the high power electronic lab, the device is proved with reliability, high sensitivity and worthy of promotion and application.
文摘At present, an automatic-mechanic contact tap-changer is widely used in power system, but it can not frequently operate. In addition, arc will occur when the switch changes. In order to solve these two problems, this paper presented an automatic on-load voltage-regulating distributing transformer which employed non-contact solid-state relay as tap-changer, and mainly introduced its structure, basic principal, design method of each key link and experimental results. Laboratory simulation experiments informed that the scheme was feasible. It was a smooth and effective experiment device, which was practical in application.
文摘In this work,an Artificial Neural Network(ANN)based technique is suggested for classifying the faults which occur in hybrid power distribution systems.Power,which is generated by the solar and wind energy-based hybrid system,is given to the grid at the Point of Common Coupling(PCC).A boost converter along with perturb and observe(P&O)algorithm is utilized in this system to obtain a constant link voltage.In contrast,the link voltage of the wind energy conversion system(WECS)is retained with the assistance of a Proportional Integral(PI)controller.The grid synchronization is tainted with the assis-tance of the d-q theory.For the analysis of faults like islanding,line-ground,and line-line fault,the ANN is utilized.The voltage signal is observed at the PCC,and the Discrete Wavelet Transform(DWT)is employed to obtain different features.Based on the collected features,the ANN classifies the faults in an effi-cient manner.The simulation is done in MATLAB and the results are also validated through the hardware implementation.Detailed fault analysis is carried out and the results are compared with the existing techniques.Finally,the Total harmonic distortion(THD)is lessened by 4.3%by using the proposed methodology.
文摘This paper presents an extended lifetime probability distribution based on the alpha power transformation. We refer to the proposed distribution as “the Alpha Power Topp-Leone (APTL) distribution”. Mathematical properties of the APTL distribution such as the density and cumulative distribution functions, survival and hazard rate functions, quantile function, median, moments and its relative measures, probability weighted moment, moment generating function, Renyi entropy, and the distribution of order statistics were derived. The method of maximum likelihood estimation was employed to estimate the unknown parameters of the APTL distribution. Finally, we used two real data sets obtained from the literature to illustrate the applicability of the APTL distribution in real-life data fitting.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project No. (PNURSP2022R50),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The objective of this article is to provide a novel extension of the conventional inverse Weibull distribution that adds an extra shape parameter to increase its flexibility.This addition is beneficial in a variety of fields,including reliability,economics,engineering,biomedical science,biological research,environmental studies,and finance.For modeling real data,several expanded classes of distributions have been established.The modified alpha power transformed approach is used to implement the new model.The datamatches the new inverseWeibull distribution better than the inverse Weibull distribution and several other competing models.It appears to be a distribution designed to support decreasing or unimodal shaped distributions based on its parameters.Precise expressions for quantiles,moments,incomplete moments,moment generating function,characteristic generating function,and entropy expression are among the determined attributes of the new distribution.The point and interval estimates are studied using the maximum likelihood method.Simulation research is conducted to illustrate the correctness of the theoretical results.Three applications to medical and engineering data are utilized to illustrate the model’s flexibility.
文摘This paper concentrates on compensating the power quality issues which have been increased in day-to-day life due to the enormous usage of loads with power electronic control.One such solution is compensating devices like Pension Protection Fund(PPF),Active power filter(APF),hybrid power filter(HPF),etc.,which are used to overcome Power Quality(PQ)issues.The proposed method used here is an active compensator called unified power quality condi-tioner(UPQC)which is a combination of shunt and series type active filter con-nected via a common DC link.The primary objective is to investigate the behavior of the compensators in the distribution networks.The performance of two configurations of UPQC,Right Shunt UPQC(RS-UPQC)and Left Shunt UPQC(LS-UPQC)are tested in the distribution networks under various load con-ditions by connecting them at the source side of harmonic generation using a spe-cially constructed transformer called inductively filtered converter transformer which adopts special wiring scheme at the secondary side.PSCAD(Power Sys-tems Computer Aided Design)/EMTDC(Electromagnetic Transients with DC Analysis)software is used to model the compensators connected to the nonlinear load.Both RS-UPQC and LS-UPQC are tested at the distribution side of the sup-ply system with Hysteresis current controller for shunt and Sinusoidal pulse with modulation controller for series at various locations of power system network and their results are compared.
基金supported by the National Key Research and Development Program of China(2017YFB0903300).
文摘Recently,power electronic transformers(PETs)have received widespread attention owing to their flexible networking,diverse operating modes,and abundant control objects.In this study,we established a steady-state model of PETs and applied it to the power flow calculation of AC-DC hybrid systems with PETs,considering the topology,power balance,loss,and control characteristics of multi-port PETs.To address new problems caused by the introduction of the PET port and control equations to the power flow calculation,this study proposes an iterative method of AC-DC mixed power flow decoupling based on step optimization,which can achieve AC-DC decoupling and effectively improve convergence.The results show that the proposed algorithm improves the iterative method and overcomes the overcorrection and initial value sensitivity problems of conventional iterative algorithms.
基金supported in part by the National Natural Science Foundation of China(No.52177071).
文摘Medium-voltage distribution systems(MVDSs)mainly consist of a feeder head,lines,distribution transformers,and the equivalent load or power supply interfaced with the distribution transformers.The information of such load or power supply can be measured via the three-wattmeter method(THM)and the two-wattmeter method(TWM).The measurements can be used to perform the control of the power supply and simulate the characteristics of the load,so the models of the load and the power supply need to consider the measurement characteristics.Existing research works on three-phase power flow(PF)just consider the measurement characteristics of THM.Hence,the PF equation of the bus measured via TWM is firstly built.Based on conventional measurements,an accurate and general model of the grounded and ungrounded slack bus is proposed.Furthermore,the influence arising from the connection type and angle shift of distribution transformers on the admittance matrix is considered,and thus a general three-phase transformer model is summarized,which is applicable for all the transformers mentioned herein.Finally,Newton's method is adopted to solve the PF calculation,and the performance of the proposed PF model is demonstrated through designed tests.
文摘Usually,rural areas can be electrified via three-phase distribution transformers with relatively large capacities.In such areas,low voltage lines are used for long distances,which cause power losses and voltage drop for different types of consumers.Reducing losses and improving voltage profiles in rural distribution networks are significant challenges for electricity distribution companies.However different solutions were proposed in the literature to overcome these challenges,most of them face difficulties when applied in the conventional distribution network.To address the above issues,an applicable solution is proposed in this paper by installing a number of small-capacity distribution transformers instead of every single large-capacity transformer in rural areas.The proposed approach is implemented in the branch network of Al-Hoqool village,which belongs to the Nineveh distribution network.The network has been inspected on-site,drawn,and analyzed using the electrical systems analysis program(ETAP).The analysis showed that using the single-phase pole-mounted transformers can improve the voltage in the network’s end by 29%and enhance the voltage profile for all consumers.The analysis has also demonstrated that the modification can reduce the total power losses by 78%compared to the existing network.Concerning the economic aspect,the payback period for the proposed network is assigned to be 20 months.
基金This project is financed by the New Century Outstanding Talents Supporting Program of Ministry of Education and Superior Young Teachers Supporting Program of Ministry of Education.
文摘A control scheme of electronic power transformer (EPT) in a three-phase four-wire distribution system, which included an input section, an isolating section and an output section, was researched under unbalanced loads. The simple and appropriate control scheme was developed through analyzing the system requirements of the primary side and the load requirements of the secondary side. In the input section, a dual-loop control in synchronous rotating d-q coordinates was introduced, and in the output section, a dual-loop control based on instantaneous output voltage was used. Load characteristics of EPT were investigated by using Matlab/Simulink software. Simulation results showed that, with the proposed control scheme, the EPT has good performances and the sinusoidal input current and constant output voltage can be realized under both balanced and unbalanced loads.
文摘The fitting of lifetime distribution in real-life data has been studied in various fields of research. With the theory of evolution still applicable, more complex data from real-world scenarios will continue to emerge. Despite this, many researchers have made commendable efforts to develop new lifetime distributions that can fit this complex data. In this paper, we utilized the KM-transformation technique to increase the flexibility of the power Lindley distribution, resulting in the Kavya-Manoharan Power Lindley (KMPL) distribution. We study the mathematical treatments of the KMPL distribution in detail and adapt the widely used method of maximum likelihood to estimate the unknown parameters of the KMPL distribution. We carry out a Monte Carlo simulation study to investigate the performance of the Maximum Likelihood Estimates (MLEs) of the parameters of the KMPL distribution. To demonstrate the effectiveness of the KMPL distribution for data fitting, we use a real dataset comprising the waiting time of 100 bank customers. We compare the KMPL distribution with other models that are extensions of the power Lindley distribution. Based on some statistical model selection criteria, the summary results of the analysis were in favor of the KMPL distribution. We further investigate the density fit and probability-probability (p-p) plots to validate the superiority of the KMPL distribution over the competing distributions for fitting the waiting time dataset.
基金supported by Science and Technology Project of SGCC(No.5400-202017203A-0-0-00)National Natural Science Foundation of China(No.92067105)。
文摘To realize the low-carbon development of power systems,digital transformation,and power marketization reform,the substation,data center,energy storage,photovoltaic,and charging stations are important components for the construction of new infrastructure.The integration infrastructure represented by multi-station integrated energy systems(MSIESs)represents the development trend,and its connotation and denotation are not immutable.This study firstly analyzed the components of MSIESs and their sub-stations and overall characteristics,and proposed an overall architecture for MSIESs.Thereafter,this system was characterized in detail from three aspects:planning and design,operation control,and market operation.The planning and construction of MSIESs was analyzed from the aspects of planning and design process,typical fusion subsystems,supply and demand prediction,and capacity determination;the operational control of MSIESs was analyzed from the aspects of model construction,coordination control,and safety assessment.Moreover,the market operation of MSIESs was examined from the aspects of the business model and spot market.Furthermore,the technical development trend of MSIESs has been explored in this study.
文摘With the rapid development of deep submicron (DSM) VLSI circuit designs, many issues such as time closure and power consumption are making the physical designs more and more challenging. In this review paper we provide readers with some recent progress of the VLSI physical designs. The recent developments of floorplanning and placement, interconnect effects, modeling and delay, buffer insertion and wire sizing, circuit order reduction, power grid analysis, parasitic extraction, and clock signal distribution are briefly reviewed.
基金supported by National Key Research and Development Program of China (2016YFB0900500,2017YFB0903100)the State Grid Science and Technology Project (SGRI-DL-F1-51-011)
文摘The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/DC hybrid distribution network is put forward according to the demands of power grid, with advantages of accepting DG and DC loads, while clearing DC fault by blocking the clamping double sub-module(CDSM) of input stage. Then, this paper shows the typical structure of AC/DC distribution network that is hand in hand. Based on the new topology, this paper designs the control and modulation strategies of each stage, where the outer loop controller of input stage is emphasized for its twocontrol mode. At last, the rationality of new topology and the validity of control strategies are verified by the steady and dynamic state simulation. At the same time, the simulation results highlight the role of PET in energy regulation.
基金Project supported by Fund for Innovative Research Groups of China (51021005)Fundamental Research Fund for the Central Universities of China(CDJRC10150004)
文摘Failure mechanisms of power transformers are complex and uncertain; it is difficult to determine index weights of insulation state. Therefore, it is a challenge to acquire an accurate assessment of insulation state of power transformers. In this paper, an assessing strategy for transformer insulation is proposed base on part-division of transformer and a comprehensive weight determination method. An index system of transformer is established on the basis of part-division of transformer. Each index’s weight is consisted of two parts, the constant weight and the variable weight, which are determined by improved analytic hierarchy process (AHP) and entropy method respectively. Af- ter categorizing insulation state into four levels and standardizing assessing indexes, a Cauchy membership function is forged, and a fuzzy algorithm is employed to simulate the uncertainty of the insulation state. Finally, a confidence criterion is employed to perform part-division based condition assessment of transformer. Case studies reveal that the proposed assessing strategy method is effective, convenient, and practical; with the new strategy, potential failures of transformers can be forecasted and insulation state of transformer parts can also be as- sessed. Furthermore, the assessing results can be used to guide condition-based maintenance.