A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected...A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments.展开更多
This study develops a novel cervical precancerous detection system by using texture analysis of field emission scanning electron microscopy(FE-SEM)images.The processing scheme adopted in the proposed system focused on...This study develops a novel cervical precancerous detection system by using texture analysis of field emission scanning electron microscopy(FE-SEM)images.The processing scheme adopted in the proposed system focused on two steps.The first step was to enhance cervical cell FE-SEM images in order to show the precancerous characterization indicator.A problem arises from the question of how to extract features which characterize cervical precancerous cells.For the first step,a preprocessing technique called intensity transformation and morphological operation(ITMO)algorithm used to enhance the quality of images was proposed.The algo-rithm consisted of contrast stretching and morphological opening operations.The second step was to characterize the cervical cells to three classes,namely normal,low grade intra-epithelial squamous lesion(LSIL),and high grade intra-epithelial squamous lesion(HSIL).To differen-tiate between normal and precancerous cells of the cervical cell FE-SEM images,human papillomavirus(HPV)contained in the surface of cells were used as indicators.In this paper,we investigated the use of texture as a tool in determining precancerous cell images based on the observation that cell images have a distinct visual texture.Gray level co-occurrences matrix(GLCM)technique was used to extract the texture features.To confirm the system's perfor-mance,the system was tested using 150 cervical cell FE-SEM images.The results showed that the accuracy,sensitivity and specificity of the proposed system are 95.7%,95.7%and 95.8%,respectively.展开更多
Limbal Stem Cell Deficiency(LSCD)is an eye disease that can cause corneal opacity and vascularization.In its advanced stage it can lead to a degree of visual impairment.It involves the changing in the semispherical sh...Limbal Stem Cell Deficiency(LSCD)is an eye disease that can cause corneal opacity and vascularization.In its advanced stage it can lead to a degree of visual impairment.It involves the changing in the semispherical shape of the cornea to a drooping shape to downwards direction.LSCD is hard to be diagnosed at early stages.The color and texture of the cornea surface can provide significant information about the cornea affected by LSCD.Parameters such as shape and texture are very crucial to differentiate normal from LSCD cornea.Although several medical approaches exist,most of them requires complicated procedure and medical devices.Therefore,in this paper,we pursued the development of a LSCD detection technique(LDT)utilizing image processing methods.Early diagnosis of LSCD is very crucial for physicians to arrange for effective treatment.In the proposed technique,we developed a method for LSCD detection utilizing frontal eye images.A dataset of 280 eye images of frontal and lateral LSCD and normal patients were used in this research.First,the cornea region of both frontal and lateral images is segmented,and the geometric features are extracted through the automated active contour model and the spline curve.While the texture features are extracted using the feature selection algorithm.The experimental results exhibited that the combined features of the geometric and texture will exhibit accuracy of 95.95%,sensitivity of 97.91% and specificity of 94.05% with the random forest classifier of n=40.As a result,this research developed a Limbal stem cell deficiency detection system utilizing features’fusion using image processing techniques for frontal and lateral digital images of the eyes.展开更多
Melanoma is a perfidious form of skin cancer.The study offers a hybrid framework for the automatic classification of melanoma.An Auto-matic Melanoma Detection System(AMDS)is used for identifying melanoma from the infe...Melanoma is a perfidious form of skin cancer.The study offers a hybrid framework for the automatic classification of melanoma.An Auto-matic Melanoma Detection System(AMDS)is used for identifying melanoma from the infected area of the skin image using image processing techniques.A larger number of pre-existing automatic melanoma detection systems are either commercial or their accuracy can be further improved.The research problem is to identify the best preprocessing technique,feature extractor,and classifier for melanoma detection using publically available MED-NODE data set.AMDS goes through four stages.The preprocessing stage is for noise removal;the segmentation stage is for extracting lesions from infected skin images;the feature extraction stage is for determining the features like asymmetry,border,and color,and the classification stage is to classify the lesion as benign or melanoma.The infected input image for the AMDS may contain impurities such as noise,illumination,artifacts,and hairs.In the proposed methodology an algorithm LePrePro is proposed for the prepro-cessing stage for denoising and brightness cum contrast normalization and another algorithm LeFET is proposed for extending the feature vector space in the feature extraction stage using a hybrid approach.In the study,a novel approach has been proposed in which different classifiers,feature extractions,and data preprocessing steps of the AMDS are compared.In a conclusion,this comparison revealed that on experimentation using Med-Node and ISIC 2017 Dataset,the best results included Gaussian blur as the best data preprocessing step,Extended feature vector which is the combination of Hue Saturation Value(HSV),and Local Binary Pattern(LBP)was the best feature extraction method,and the ensemble bagged tree was the best classification technique on the Med-Node data sets with 99%Area Under the Receiver Operating Characteristic Curve(AUC),93.52%accuracy,90.82%sensitivity,and 98.36%specificity in the proposed automatic melanoma detection system.展开更多
The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable ...The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply.展开更多
基金supported partly by the National Basic Research Program of China (2005CB724303)the National Natural Science Foundation of China (60671062) Shanghai Leading Academic Discipline Project (B112).
文摘A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments.
基金UM Postgraduate Research Fund PG083-2013B and UM High Impact Research Grant UM-MOHE UM.C/625/1/HIR/MOHE/14 from the Ministry of Higher Education,Malaysia..
文摘This study develops a novel cervical precancerous detection system by using texture analysis of field emission scanning electron microscopy(FE-SEM)images.The processing scheme adopted in the proposed system focused on two steps.The first step was to enhance cervical cell FE-SEM images in order to show the precancerous characterization indicator.A problem arises from the question of how to extract features which characterize cervical precancerous cells.For the first step,a preprocessing technique called intensity transformation and morphological operation(ITMO)algorithm used to enhance the quality of images was proposed.The algo-rithm consisted of contrast stretching and morphological opening operations.The second step was to characterize the cervical cells to three classes,namely normal,low grade intra-epithelial squamous lesion(LSIL),and high grade intra-epithelial squamous lesion(HSIL).To differen-tiate between normal and precancerous cells of the cervical cell FE-SEM images,human papillomavirus(HPV)contained in the surface of cells were used as indicators.In this paper,we investigated the use of texture as a tool in determining precancerous cell images based on the observation that cell images have a distinct visual texture.Gray level co-occurrences matrix(GLCM)technique was used to extract the texture features.To confirm the system's perfor-mance,the system was tested using 150 cervical cell FE-SEM images.The results showed that the accuracy,sensitivity and specificity of the proposed system are 95.7%,95.7%and 95.8%,respectively.
基金funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.
文摘Limbal Stem Cell Deficiency(LSCD)is an eye disease that can cause corneal opacity and vascularization.In its advanced stage it can lead to a degree of visual impairment.It involves the changing in the semispherical shape of the cornea to a drooping shape to downwards direction.LSCD is hard to be diagnosed at early stages.The color and texture of the cornea surface can provide significant information about the cornea affected by LSCD.Parameters such as shape and texture are very crucial to differentiate normal from LSCD cornea.Although several medical approaches exist,most of them requires complicated procedure and medical devices.Therefore,in this paper,we pursued the development of a LSCD detection technique(LDT)utilizing image processing methods.Early diagnosis of LSCD is very crucial for physicians to arrange for effective treatment.In the proposed technique,we developed a method for LSCD detection utilizing frontal eye images.A dataset of 280 eye images of frontal and lateral LSCD and normal patients were used in this research.First,the cornea region of both frontal and lateral images is segmented,and the geometric features are extracted through the automated active contour model and the spline curve.While the texture features are extracted using the feature selection algorithm.The experimental results exhibited that the combined features of the geometric and texture will exhibit accuracy of 95.95%,sensitivity of 97.91% and specificity of 94.05% with the random forest classifier of n=40.As a result,this research developed a Limbal stem cell deficiency detection system utilizing features’fusion using image processing techniques for frontal and lateral digital images of the eyes.
文摘Melanoma is a perfidious form of skin cancer.The study offers a hybrid framework for the automatic classification of melanoma.An Auto-matic Melanoma Detection System(AMDS)is used for identifying melanoma from the infected area of the skin image using image processing techniques.A larger number of pre-existing automatic melanoma detection systems are either commercial or their accuracy can be further improved.The research problem is to identify the best preprocessing technique,feature extractor,and classifier for melanoma detection using publically available MED-NODE data set.AMDS goes through four stages.The preprocessing stage is for noise removal;the segmentation stage is for extracting lesions from infected skin images;the feature extraction stage is for determining the features like asymmetry,border,and color,and the classification stage is to classify the lesion as benign or melanoma.The infected input image for the AMDS may contain impurities such as noise,illumination,artifacts,and hairs.In the proposed methodology an algorithm LePrePro is proposed for the prepro-cessing stage for denoising and brightness cum contrast normalization and another algorithm LeFET is proposed for extending the feature vector space in the feature extraction stage using a hybrid approach.In the study,a novel approach has been proposed in which different classifiers,feature extractions,and data preprocessing steps of the AMDS are compared.In a conclusion,this comparison revealed that on experimentation using Med-Node and ISIC 2017 Dataset,the best results included Gaussian blur as the best data preprocessing step,Extended feature vector which is the combination of Hue Saturation Value(HSV),and Local Binary Pattern(LBP)was the best feature extraction method,and the ensemble bagged tree was the best classification technique on the Med-Node data sets with 99%Area Under the Receiver Operating Characteristic Curve(AUC),93.52%accuracy,90.82%sensitivity,and 98.36%specificity in the proposed automatic melanoma detection system.
基金supported by the Key Research and Development Projects in Shaanxi Province(Program No.2021GY-306)the Innovation Capability Support Program of Shaanxi(Program No.2022KJXX-41)the Key Scientific and Technological Projects of Xi’an(Program No.2022JH-RGZN-0005).
文摘The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply.