期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Detect early stage lung cancer by a LAMP microfluidic chip system with a real-time fluorescent filter processor 被引量:5
1
作者 WANG TongZhou1, ZHANG Ye1, HUANG GuoLiang1,2,3, WANG Can2, XIE Lan1, MA Li2, LI ZhiYong2, LUO XianBo2, TIAN Hao2, LI Qiang1, LI Xin1, LV ZhouYan1 & BAO XiaoFan11Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China 2National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China 3Yangtze Delta Region Institute of Tsinghua University, Hangzhou 330401, China 《Science China Chemistry》 SCIE EI CAS 2012年第4期508-514,共7页
This work presents a promising clinical molecular diagnostics for early stage lung cancer. This novel diagnostic method utilized the loopmediated isothermal amplification (LAMP), micro fluidic chips and a confocal o... This work presents a promising clinical molecular diagnostics for early stage lung cancer. This novel diagnostic method utilized the loopmediated isothermal amplification (LAMP), micro fluidic chips and a confocal optical detector with a nonlinear fluorescent filter processor. An isothermal amplification based microfluidic chip for the early diagnostics of lung cancer was developed and a confocal optical detector was improved by a novel real-time fluorescent filter to sensitively monitor the DNA amplification procedure with high signal to noise ratio and fluorescence collecting ability. Experiment showed that a rapid diagnostic of lung cancer by detecting the existence of the CEA mRNA could be performed in only 5 laL of reaction assay in less than 45 min. While the traditional intube RTPCR set consumed more than 25 -μL of the assay and took more than 90 rain. 展开更多
关键词 microfluidic chip isothermal amplification lung cancer confocal detection non linear filter
原文传递
Measurement-While-Milling(MWM):An innovative approach for increasing the casing milling efficiency in deep drilling operations
2
作者 Mohammed A.Namuq Mouhammed Jandal Berro Matthias Reich 《Petroleum Research》 EI 2023年第3期360-369,共10页
Deep boreholes are secured by steel tubes(casings)which are run in the hole and cemented in place.In most cases,these casings are considered a permanent installation.However,sometimes they have to be removed in order ... Deep boreholes are secured by steel tubes(casings)which are run in the hole and cemented in place.In most cases,these casings are considered a permanent installation.However,sometimes they have to be removed in order to repair or abandon the well.As the casing is cemented in place,it cannot be pulled,but needs to be milled to small chips which are flushed out of the borehole by the drilling mud.One of the main challenges in casing milling operations is continuous and complete chip removal.If the metal chips are too long,chip nests will grow around the milling string.As a result,this will restrict the annulus flow area and affect the chip removal in boreholes.The obvious solution in such condition is to do round tripping and clean the chip nest which is associated with the risk of injuries,as well as,increasing the none-productive time.In the worst case,the poor cleaning and circulation of chips can even end up with the milling string stucking problem in boreholes,consequently long-time fishing job.According to the available literatures,hardly any study for identifying the chip shapes and accordingly adapting the operation parameters to the casing milling process environment downhole to keep milling within desired generated chip shapes and sizes could be found.This paper presents an encouraging idea to monitor the milling process in real time by utilizing the acoustic emission signals(vibration modes)accompanied with the milling process to identify the desired chip shape and size range.Initial laboratory tests have been carried out to investigate and study the acoustic emission signals accompanying the casing milling process to identify the chip shapes and sizes.The preliminary test results show very good correlation and agreement between the chip length formed during those specific tests and the observed burst events in the measured signals.The study results have demonstrated the functionality of the new concept,and thus confirmed that it is a very promising idea towards developing a practical real time downhole monitoring system for milling operations.Adapting the milling operation parameters downhole in real time to keep the milling process within the desired generated chip shapes and sizes will offer better cleaning and removal of the chips and will prevent the development of chip nest around the drill string and its consequences such as round tripping,risk of drilling crew injury,none-productive time and even milling string stucking problems. 展开更多
关键词 Oil/Gas well casing milling Measurement while milling Casing milling chips shape detection Acoustic emission accompanied with casing milling operations Casing milling experiments
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部