Based on the techniques of the quantum remote state preparation via a deterministic way, this paper proposes a quantum communication scheme to distribute the secret messages in two phases, i.e., the carrier state chec...Based on the techniques of the quantum remote state preparation via a deterministic way, this paper proposes a quantum communication scheme to distribute the secret messages in two phases, i.e., the carrier state checking phase and the message state transmitting phase. In the first phase, the secret messages are encoded by the sender using a stabilizer quantum code and then transmitted to the receiver by implementing three CNOT gates. In the second phase, the communicators check the perfectness of the entanglement of the transmitted states. The messages can be distributed to the receiver even if some of the transmitted qubits are destroyed.展开更多
The loss of a quantum channel leads to an irretrievable particle loss as well as information. In this paper, the loss of quantum channel is analysed and a method is put forward to recover the particle and information ...The loss of a quantum channel leads to an irretrievable particle loss as well as information. In this paper, the loss of quantum channel is analysed and a method is put forward to recover the particle and information loss effectively using universal quantum error correction. Then a secure direct communication scheme is proposed, such that in a loss channel the information that an eavesdropper can obtain would be limited to arbitrarily small when the code is properly chosen and the correction operation is properly arranged.展开更多
A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit tw...A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer.展开更多
We present a novel protocol for deterministic secure quantum communication by using the lour-qubit cluster state as quantum channel. It is shown that two legitimate users can directly transmit the secret messages base...We present a novel protocol for deterministic secure quantum communication by using the lour-qubit cluster state as quantum channel. It is shown that two legitimate users can directly transmit the secret messages based on Bellbasis measurements and classical communication. The present protocol makes use of the ideas of block transmission and decoy particle checking technique. It has a high capacity as each cluster state can carry two 5its of information, and has a high intrinsic efficieney 5ecause almost all the instances except the decoy checking particles (its numSer is negligible) are useful. Furthermore, this protocol is feasible with present-day technique.展开更多
We propose two schemes for quantum secure direct communication (QSDC) and deterministic securequantum communication (DSQC) over collective dephasing noisy channel.In our schemes,four special two-qubit statesare used a...We propose two schemes for quantum secure direct communication (QSDC) and deterministic securequantum communication (DSQC) over collective dephasing noisy channel.In our schemes,four special two-qubit statesare used as the quantum channel.Since these states are unchanged through the collective dephasing noisy channel,the effect of the channel noise can be perfectly overcome.Simultaneously,the security against some usual attacks canbe ensured by utilizing the various checking procedures.Furthermore,these two schemes are feasible with present-daytechnique.展开更多
This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding...This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding function, which is designed by exploiting the property of the corresponding logical Bell states immune to collective-dephasing noise and collective-rotation noise, respectively. The secret message can be encoded by two simple unitary operations and decoded by merely performing Bell measurements, which can make the proposed scheme more convenient in practical applications. Moreover, the strategy of one-step quanta transmission, together with the technique of decoy logical qubits checking not only reduces the influence of other noise existing in a quantum channel, but also guarantees the security of the communication between two legitimate users. The final analysis shows that the proposed schemes are feasible and robust against various well-known attacks over the collective noise channel.展开更多
A two-step deterministic secure quantum communication (DSQC) scheme using blocks of three-qubit W state is proposed. In this scheme, the secret messages can be encoded by employing four two-particle unitary operatio...A two-step deterministic secure quantum communication (DSQC) scheme using blocks of three-qubit W state is proposed. In this scheme, the secret messages can be encoded by employing four two-particle unitary operations and directly decoded by utilizing the corresponding measurements in Bell basis or single-particle basis. Comparing with most previous DSQC protocols, the present scheme has a high total efficiency, which comes up to 50%. Apart from this, it has still the advantages of high capacity as each W state can carry two bits of secret information, and high intrinsic efficiency because almost all the instances are useful. Furthermore, the security of this communication can be ensured by the decoy particle checking technique and the two-step transmitting idea.展开更多
This study proposes a new coding function for the symmetric W state. Based on the new coding function, a theoretical protocol of deterministic quanama communication (DQC) is proposed. The sender can use the proposed...This study proposes a new coding function for the symmetric W state. Based on the new coding function, a theoretical protocol of deterministic quanama communication (DQC) is proposed. The sender can use the proposed coding function to encode his/her message, and the receiver can perform the imperfect Bell measurement to obtain the sender's message. In comparison to the existing DQC protocols that also use the W class state, the proposed protocol is more efficient and also more practical within today's technology. Moreover, the security of this protocol is analyzed to show that any eavesdropper will be detected with a very high probability under both the ideal and the noisy quantum channel.展开更多
A controlled deterministic secure quantum communication(CDSQC) protocol is proposed based on threeparticle GHZ state in X-basis.Only X-basis and Z_1Z_2X_3-basis(composed of Z-basis and X-basis) measurement are require...A controlled deterministic secure quantum communication(CDSQC) protocol is proposed based on threeparticle GHZ state in X-basis.Only X-basis and Z_1Z_2X_3-basis(composed of Z-basis and X-basis) measurement are required,which makes the scheme more convenient than others in practical applications.By distributing a random key between both sides of the communication and performing classical XOR operation,we realize a one-time-pad scheme,therefore our protocol achieves unconditional secure.Because only user with legitimate identity string can decrypt the secret,our protocol can resist man-in-the middle attack.The three-particle GHZ state in X-basis is used as decoy photons to detect eavesdropping.The detection rate reaches 75% per qubit.展开更多
A quantum secure direct communication protocol with cluster states is proposed.Compared with the deterministic secure quantum communication protocol with the cluster state proposed by Yuan and Song(Int.J.Quant.Inform....A quantum secure direct communication protocol with cluster states is proposed.Compared with the deterministic secure quantum communication protocol with the cluster state proposed by Yuan and Song(Int.J.Quant.Inform.,2009,7:689),this protocol can achieve higher intrinsic efficiency by using two-step transmission.The implementation of this protocol is also discussed.展开更多
Multiparty quantum communication is an important branch of quantum networks.It enables private information transmission with information-theoretic security among legitimate parties.We propose a sender-controlled measu...Multiparty quantum communication is an important branch of quantum networks.It enables private information transmission with information-theoretic security among legitimate parties.We propose a sender-controlled measurement-device-independent multiparty quantum communication protocol.The sender Alice divides a private message into several parts and delivers them to different receivers for secret sharing with imperfect measurement devices and untrusted ancillary nodes.Furthermore,Alice acts as an active controller and checks the security of quantum channels and the reliability of each receiver before she encodes her private message for secret sharing,which makes the protocol convenient for multiparity quantum communication.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 604720181 60573127 and 10547125), the Doctoral Programs Foundation of the Ministry of Education of China (Grant No 20020247063).
文摘Based on the techniques of the quantum remote state preparation via a deterministic way, this paper proposes a quantum communication scheme to distribute the secret messages in two phases, i.e., the carrier state checking phase and the message state transmitting phase. In the first phase, the secret messages are encoded by the sender using a stabilizer quantum code and then transmitted to the receiver by implementing three CNOT gates. In the second phase, the communicators check the perfectness of the entanglement of the transmitted states. The messages can be distributed to the receiver even if some of the transmitted qubits are destroyed.
基金Project supported by the National Natural Science Foundation of China (Grant No 10504042).Acknowledgments We would like to thank Liu Wei-Tao, Wu Wei and Gao Ming for useful discussions.
文摘The loss of a quantum channel leads to an irretrievable particle loss as well as information. In this paper, the loss of quantum channel is analysed and a method is put forward to recover the particle and information loss effectively using universal quantum error correction. Then a secure direct communication scheme is proposed, such that in a loss channel the information that an eavesdropper can obtain would be limited to arbitrarily small when the code is properly chosen and the correction operation is properly arranged.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60572071 and 60873101)Natural Science Foundation of Jiangsu Province (Grant Nos BM2006504, BK2007104 and BK2008209)College Natural Science Foundation of Jiangsu Province (Grant No 06KJB520137)
文摘A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer.
基金supported by the Postgraduate Innovation Research Plan from Anhui University under Grant No.20073039
文摘We present a novel protocol for deterministic secure quantum communication by using the lour-qubit cluster state as quantum channel. It is shown that two legitimate users can directly transmit the secret messages based on Bellbasis measurements and classical communication. The present protocol makes use of the ideas of block transmission and decoy particle checking technique. It has a high capacity as each cluster state can carry two 5its of information, and has a high intrinsic efficieney 5ecause almost all the instances except the decoy checking particles (its numSer is negligible) are useful. Furthermore, this protocol is feasible with present-day technique.
文摘We propose two schemes for quantum secure direct communication (QSDC) and deterministic securequantum communication (DSQC) over collective dephasing noisy channel.In our schemes,four special two-qubit statesare used as the quantum channel.Since these states are unchanged through the collective dephasing noisy channel,the effect of the channel noise can be perfectly overcome.Simultaneously,the security against some usual attacks canbe ensured by utilizing the various checking procedures.Furthermore,these two schemes are feasible with present-daytechnique.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61272501,61272514,61170272,61472048,61402058,61121061,and 61411146001)the Program for New Century Excellent Talents in University of China(Grant No.NCET-13-0681)+4 种基金the National Development Foundation for Cryptological Research(Grant No.MMJJ201401012)the Fok Ying Tong Education Foundation(Grant No.131067)the Natural Science Foundation of Beijing(Grant Nos.4132056 and 4152038)the Postdoctoral Science Foundation of China(Grant No.2014M561826)the National Key Basic Research Program,China(Grant No.2012CB315905)
文摘This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding function, which is designed by exploiting the property of the corresponding logical Bell states immune to collective-dephasing noise and collective-rotation noise, respectively. The secret message can be encoded by two simple unitary operations and decoded by merely performing Bell measurements, which can make the proposed scheme more convenient in practical applications. Moreover, the strategy of one-step quanta transmission, together with the technique of decoy logical qubits checking not only reduces the influence of other noise existing in a quantum channel, but also guarantees the security of the communication between two legitimate users. The final analysis shows that the proposed schemes are feasible and robust against various well-known attacks over the collective noise channel.
基金Supported by the Key Project of the Education Department of Anhui Province under Grant No.KJ2010A323the Talent Project of the Anhui Province for Outstanding Youth under Grant Nos.2009SQRZ190,2010SQRL186,2010SQRL187 and 2011SQRL147the Natural Science Research Programme of the Education Department of Anhui Province under Grant No.KJ2009B018Z
文摘A two-step deterministic secure quantum communication (DSQC) scheme using blocks of three-qubit W state is proposed. In this scheme, the secret messages can be encoded by employing four two-particle unitary operations and directly decoded by utilizing the corresponding measurements in Bell basis or single-particle basis. Comparing with most previous DSQC protocols, the present scheme has a high total efficiency, which comes up to 50%. Apart from this, it has still the advantages of high capacity as each W state can carry two bits of secret information, and high intrinsic efficiency because almost all the instances are useful. Furthermore, the security of this communication can be ensured by the decoy particle checking technique and the two-step transmitting idea.
基金supported by the National Science Council of the Republic of China(Grant No.NSC 98-2221-E-006-097-MY3)
文摘This study proposes a new coding function for the symmetric W state. Based on the new coding function, a theoretical protocol of deterministic quanama communication (DQC) is proposed. The sender can use the proposed coding function to encode his/her message, and the receiver can perform the imperfect Bell measurement to obtain the sender's message. In comparison to the existing DQC protocols that also use the W class state, the proposed protocol is more efficient and also more practical within today's technology. Moreover, the security of this protocol is analyzed to show that any eavesdropper will be detected with a very high probability under both the ideal and the noisy quantum channel.
基金Supported by the National Natural Science Foundation of China under Grant No.61402058Science and Technology,Sichuan Province of China under Grant No.2013GZX0137+1 种基金Fund for Young Persons Project of Sichuan Province of China under Grant No.12ZB017the Foundation of Cyberspace Security Key Laboratory of Sichuan Higher Education Institutions under Grant No.szjj2014-074
文摘A controlled deterministic secure quantum communication(CDSQC) protocol is proposed based on threeparticle GHZ state in X-basis.Only X-basis and Z_1Z_2X_3-basis(composed of Z-basis and X-basis) measurement are required,which makes the scheme more convenient than others in practical applications.By distributing a random key between both sides of the communication and performing classical XOR operation,we realize a one-time-pad scheme,therefore our protocol achieves unconditional secure.Because only user with legitimate identity string can decrypt the secret,our protocol can resist man-in-the middle attack.The three-particle GHZ state in X-basis is used as decoy photons to detect eavesdropping.The detection rate reaches 75% per qubit.
基金supported by the National High-Tech Research,Development Plan of China (Grant No. 2009AA01Z441)the National Natural Science Foundation of China (Grant Nos. 60873191 and 60821001)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education(Grant Nos. 20091103120014 and 20090005110010)the Beijing Natural Science Foundation (Grant Nos. 1093015,1102004)
文摘A quantum secure direct communication protocol with cluster states is proposed.Compared with the deterministic secure quantum communication protocol with the cluster state proposed by Yuan and Song(Int.J.Quant.Inform.,2009,7:689),this protocol can achieve higher intrinsic efficiency by using two-step transmission.The implementation of this protocol is also discussed.
基金supported by the National Natural Science Foundation of China(Grant No.11904171)the Natural Science Foundation of Jiangsu Province(Grant No.BK20180461).
文摘Multiparty quantum communication is an important branch of quantum networks.It enables private information transmission with information-theoretic security among legitimate parties.We propose a sender-controlled measurement-device-independent multiparty quantum communication protocol.The sender Alice divides a private message into several parts and delivers them to different receivers for secret sharing with imperfect measurement devices and untrusted ancillary nodes.Furthermore,Alice acts as an active controller and checks the security of quantum channels and the reliability of each receiver before she encodes her private message for secret sharing,which makes the protocol convenient for multiparity quantum communication.