期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Theoretical approach to one-dimensional detonation instability
1
作者 Chun WANG Gaoxiang XIANG Zonglin JIANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第9期1231-1238,共8页
Detonation instability is a fundamental problem for understanding the microbehavior of a detonation front. With the theoretical approach of shock dynamics, detonation instability can be mathematically described as a s... Detonation instability is a fundamental problem for understanding the microbehavior of a detonation front. With the theoretical approach of shock dynamics, detonation instability can be mathematically described as a second-order ordinary difference equation. A one-dimensional detonation wave can be modelled as a type of oscillators. There are two different physical mechanisms controlling the behaviors of a detonation. If the shock Mach number is smaller than the equilibrium Mach number, the fluid will reach the sonic speed before the end of the chemical reaction. Then, thermal chock occurs, and the leading shock becomes stronger. If the shock Mach number is larger than the equilib- rium Mach number, the fluid will be subsonic at the end of the chemical reaction. Then, the downstream rarefaction waves propagate upstream, and weaken the leading shock. The above two mechanisms are the basic recovery forces toward the equilibrium state for detonation sustenance and propagation. The detonation oscillator concept is helpful for understanding the oscillating and periodic behaviors of detonation waves. The shock dynamics theory of detonation instability gives a description of the feedback regime of the chemical reaction, which causes variations of the leading shock of the detonation. Key words detonation wave, detonation instability, shock wave, chemical reaction 展开更多
关键词 detonation wave detonation instability shock wave chemical reaction
下载PDF
Effect of Cellular Instability on the Initiation of Cylindrical Detonations
2
作者 韩文虎 黄金 +3 位作者 杜宁 刘再刚 孔文俊 王成 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第5期76-79,共4页
The direct initiation of detonations in one-dimensional (1D) and two-dimensional (2D) cylindrical geometries is investigated through numerical simulations. In comparison of 1D and 2D simulations, it is found that ... The direct initiation of detonations in one-dimensional (1D) and two-dimensional (2D) cylindrical geometries is investigated through numerical simulations. In comparison of 1D and 2D simulations, it is found that cellular instability has a negative effect on the 2D initiation and makes it more difficult to initiate a sustaining 2D cylindrical detonation. This effect associates closely with the activation energy. For the lower activation energy, the 2D initiation of cylindrical detonations can be achieved through a subcritical initiation way. With increasing the activation energy, the 2D cylindrical detonation has increased difficulty in its initiation due to the presence of unreacted pockets behind the detonation front and usually requires rather larger source energy. 展开更多
关键词 Effect of Cellular instability on the Initiation of Cylindrical detonations
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部