期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
O,H,and Sr isotope evidence for origin and mixing processes of the Gudui geothermal system,Himalayas,China 被引量:6
1
作者 Chenguang Wang Mianping Zheng +4 位作者 Xuefei Zhang Enyuan Xing Jiangyi Zhang Jianhong Ren Yuan Ling 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第4期1175-1187,共13页
Tho Gudui geothermal field records the highest temperature at equivalent borehole depths among the lainland hydrothermal systems in China's Mainland.Located about 150 km southeast of Lhasa City,the capital of Tibe... Tho Gudui geothermal field records the highest temperature at equivalent borehole depths among the lainland hydrothermal systems in China's Mainland.Located about 150 km southeast of Lhasa City,the capital of Tibet,the Gudui geothermal field belongs to the Sangri-Cuona rift belt,also known as the Sangri-Cuona geothermal belt,and is representative of the non-volcanic geothermal systems in the Himalayas.In this study,oxygen-18 and deuterium isotope compositions as well as 87Sr/86Sr ratios of water samples collected from the Gudui geothermal field were characterized to understand the origin and mixing processes of the geothermal fluids at Gudui.Hydrogen and oxygen isotope plots show both,deep and shallow reservoirs in the Gudui geothermal field.Deep geothermal fluids are the mixing product of magmatic and infiltrating snow-melt water.Calculations show that the magma fluid component of the deep geothermal fluids account for about 21.10%-24.04%;magma fluids lay also be a contributing source of lithium.The linear relationship of the 87Sr/86Sr isotopic ratio versus the 1/Sr plot indicates that shallow geothermal fluids form from the mixing of deep geothermal fluids with cold groundwater.Using a binary mixing model with deep geothermal fluid and cold groundwater as two end-members,the nixing ratios of the latter in most surface hot springs samples were calculated to be between 5% and 10%.Combined with basic geological characteristics,hydrogen and oxygen isotope characteristics,strontium concentration,87Sr/(86)Sr ratios,and the binary mixing model,we infer the 6 th-Class Reservoirs Evolution Conceptual Model(6-CRECM) for the Gudui geothermal system.This model represents an idealized summary of the characteristics of the Gudui geothermal field based on our comprehensive understanding of the origin and mixing processes of the geothermal fluid in Gudui.This study may aid in identifying the geothermal and geochemical origin of the Gudui high-temperature hydrothermal systems in remote Tibet of China,whose potential for geothermal development and utilization is enormous and untapped. 展开更多
关键词 Geothermal fluid Oxygen-18 and deuterium isotope 87Sr/86Sr ratio Origin and mixing Gudui HIMALAYAS
下载PDF
GCM Simulations of Stable Isotopes in the Water Cycle in Comparison with GNIP Observations over East Asia 被引量:9
2
作者 章新平 孙治安 +3 位作者 关华德 张新主 吴华武 黄一民 《Acta meteorologica Sinica》 SCIE 2012年第4期420-437,共18页
In this paper, we examine the performance of four isotope incorporated GCMs, i.e., ECHAM4 (Univer- sity of Hamburg), HadCM3 (Hadley Centre), GISS E (Goddard Institute of Space Sciences), and MUGCM (Melbourne Un... In this paper, we examine the performance of four isotope incorporated GCMs, i.e., ECHAM4 (Univer- sity of Hamburg), HadCM3 (Hadley Centre), GISS E (Goddard Institute of Space Sciences), and MUGCM (Melbourne University), by comparing the model results with GNIP (Global Network of Isotopes in Precip- itation) observations. The spatial distributions of mean annual δD and mean annual deuterium excess d in precipitation, and the relationship between δ18O and δD in precipitation, are compared between GCMs and GNIP data over East Asia. Overall, the four GCMs reproduce major characteristics of δD in precipitation as observed by GNIP. Among the four models, the results of ECHAM4 and GISS E are more consistent with GNIP observed precipitation δD distribution. The simulated d distributions are less consistent with the GNIP results. This may indicate that kinetic fractionation processes are not appropriately represented in the isotopic schemes of GCMs. The GCM modeled MWL (meteoric water line) slopes are close to the GNIP derived MWL, but the simulated MWL intercepts are significantly overestimated. This supports that the four isotope incorporated GCMs may not represent the kinetic fractionation processes well. In term of LMWLs (local meteoric water lines), the simulated LMWL slopes are similar to those from GNIP observa- tions, but slightly overestimated for most locations. Overall, ECHAM4 has better capability in simulating MWL and LMWLs, followed by GISS E. Some isotopic functions (especially those related to kinetic frac- tionation) and their parameterizations in GCMs may have caused the discrepancy between the simulated and GNIP observed results. Future work is recommended to improve isotopic function parameterization on the basis of the high-resolution isotope observations. 展开更多
关键词 GCM GNIP stable isotope deuterium excess meteoric water line
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部