Objective The aim of the present study was to investigate the effects of paternal Di‐N‐butyl‐phthalate (DBP) exposure pre‐ and postnatally on F1 generation offspring,and prenatally on F2 generation offspring.Met...Objective The aim of the present study was to investigate the effects of paternal Di‐N‐butyl‐phthalate (DBP) exposure pre‐ and postnatally on F1 generation offspring,and prenatally on F2 generation offspring.Methods Male mice were exposed to either 500 mg/kg or 2 000 mg/kg of DBP for 8 weeks,and mated with non‐exposed females.Three‐quarters of the females were sacrificed a day prior to parturition,and examined for the number of living and dead implantations,and incidence of gross malformations.Pups from the remaining females were assessed for developmental markers,growth parameters,as well as sperm quantity and quality.Results There were no changes in the fertility of parents and in intrauterine development of the offspring.Pups of DBP‐exposed males demonstrated growth‐retardation.Following paternal exposure to 500 mg/kg bw of DBP,there were almost twice the number of males than females born in the F1 generation.F1 generation females had a 2.5‐day delay in vaginal opening.Paternal exposure to 2 000 mg/kg bw of DBP increased the incidence of sperm head malformations in F1 generation males;however,there were no changes in the fertility and viability of foetuses in the F2 generation.Conclusion Paternal DBP exposure may disturb the sex ratio of the offspring,delay female sexual maturation,and deteriorate the sperm quality of F1 generation males.展开更多
Objective To investigate the relationship between atopic allergy and depression and the role of DBP in the development of depression. Methods BALB/c mice were randomly divided into eight groups:saline;ovalbumin (OVA...Objective To investigate the relationship between atopic allergy and depression and the role of DBP in the development of depression. Methods BALB/c mice were randomly divided into eight groups:saline;ovalbumin (OVA)-immunized;saline+DBP (0.45 mg/kg·183;d); saline+DBP (45 mg/kg·d); DBP (0.45 mg/kg·d) OVA-immunized; DBP (45 mg/kg·d) OVA-immunized; saline+hydrocortisone (30 mg/kg·d); and hydrocortisone (30 mg/kg·d)-exposed OVA-immunized. Behavior (e.g. open-field, tail suspension, and forced swimming tests), viscera coefficients (brain and spleen), oxidative damage [e.g. reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH)], as well as levels of IgE and IL-4, were then analyzed. Results In the saline and OVA groups, the degree of depression symptoms in mice increased with increasing DBP concentration. Additionally, the OVA-immunity groups were associated with more serious depressive behavior compared with the same exposure concentration in the saline group. Oxidative damage was associated with a dose-dependent increase in DBP in the different groups. IL-4 and IgE levels were associated with low-dose DBP stimulation, which changed to high-dose inhibition with increasing DBP exposure, possibly due to spleen injury seen at high DBP concentrations.Conclusion Development of an atopic allergy has the potential to increase the risk of depression in mice, and it seems that DBP helps OVA to exert its effect in our present model. Moreover, the results of our study implicate a certain connection between brain oxidative stress and depression, which deserves a further exploration.展开更多
Human beings are increasingly exposed to phthalates,which are a group of chemicals used to make plastics more flexible and harder to break,and simultaneously ingesting abundant food emulsifiers via daily diet.The purp...Human beings are increasingly exposed to phthalates,which are a group of chemicals used to make plastics more flexible and harder to break,and simultaneously ingesting abundant food emulsifiers via daily diet.The purpose of this study was to investigate the effect of the food emulsifier glycerin monostearate(GMS)on male reproductive toxicity caused by di(2-ethylhexyl)phthalate(DEHP,one of the phthalates)and explore the underlying mechanism.Thirty male Sprague-Dawley rats were randomly divided into control group,DEHP group and DEHP+GMS group.Rats in the DEHP group and DEHP+GMS group were orally administered with 200 mg/kg/d DEHP with or without 20 mg/kg/d GMS.After 30 days of continuous intervention,it was found that the serum testosterone level was significantly lowered in DEHP group and DEHP+GMS group than that in control group(P<0.01).The serum testosterone level and the relative testis weight were significantly decreased in the DEHP+GMS group as compared with those in the DEHP group and control group(P<0.05).More spermatids were observed to be shed off in DEHP+GMS group than in DEHP group.The expression levels of cell cycle checkpoint kinase 1(Chkl),cell division cycle gene 2(Cdc2),and cyclin-dependent kinase 2(CDK2)were down-regulated in DEHP group,and this tendency was more significant in DEHP+GMS group(P<0.05 or P<0.01).There was no significant difference in the P-glycoprotein(P-gp)expression between DEHP group and control group.However,P-gp was markedly down-regulated in DEHP+GMS group(P<O.Ol).The results indicated that the food emulsifier GMS aggravated the toxicity of DEHP on male reproduction by inhibiting the cell cycle of testicular cells and the expression of P-gp in testis tissues.展开更多
Objective To estimate the daily intake of DEHP among workers in flavoring factories. Methods 71 workers in two flavoring manufacturers, 27 administrators in those factories and 31 laboratory technicians in a research ...Objective To estimate the daily intake of DEHP among workers in flavoring factories. Methods 71 workers in two flavoring manufacturers, 27 administrators in those factories and 31 laboratory technicians in a research institute were recruited and assigned to exposure group, control group 1 and control group 2 respectively. Their urinary DEHP metabolites, mono(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), were detected by isotope dilution-ultra performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS). The urinary metabolites concentrations were converted into DEHP intake levels using two pharmacokinetic models: the urine creatinine-excretion (UCE) one and the urine volume (UV) one. Results No significant differences were found among the three groups. Based on the urinary concentrations of Z3MEHP, we got a median daily DEHP intake of 3.22 or 1.85 μg/kg body-weight/day applying the UV or UCE models respectively. Depending on the UV model, three subjects (2.34%) exceeded the RfD value given by US EPA and the P50 of estimate daily DEHP intakes accounted for 16.10% of the RfD value. No subjects exceeded the limitation depending on the UCE model. Conclusion The workers in flavoring factories were not supposed to be the high DEHP exposure ones and their exposure level remained at a low risk.展开更多
Di-n-butyl phthalate (DBP) is an endocrine-disrupting chemical that has the potential to affect male reproduction. However, the reproductive effects of low-dose DBP are still not well known, especially at the molecu...Di-n-butyl phthalate (DBP) is an endocrine-disrupting chemical that has the potential to affect male reproduction. However, the reproductive effects of low-dose DBP are still not well known, especially at the molecular level. In the present study, pubertal male Sprague-Dawley rats were orally administered DBP at a wide range of doses (0.1, 1.0, 10, 100 and 500 mg kg^-1 day^-1) for 30 days. The selected end points included reproductive organ weights, testicular histopathology and serum hormonal levels. Additionally, proteomic analysis was performed to identify proteins that are differentially expressed as a result of exposure to DBP at low doses (0.1, 1.0 and 10 mg kg^-1 day^-1). Toxic effects were observed in the high-dose groups, including anomalous development of testes and epididymides, severe atrophy of seminiferous tubules, loss of spermatogenesis and abnormal levels of serum hormones. Treatment with low doses of DBP seemed to exert a 'stimulative effect' on the serum hormones. Proteomics analysis of rat testes showed 20 differentially expressed proteins. Among these proteins, alterations in the expression of HnRNPA2/B1, vimentin and superoxide dismutase 1 (SOD1) were further confirmed by Western blot and immunohistochemistry. Taken together, we conclude that high doses of DBP led to testicular toxicity, and low doses of DBP led to changes in the expression of proteins involved in spermatogenesis as well as changes in the number and function of Sertoli and Leydig cells, although no obvious morphological changes appeared. The identification of these differentially expressed proteins provides important information about the mechanisms underlying the effects of DBP on male rat reproduction.展开更多
The aim of this study was to evaluate the effects of low concentrations of DEHP and MEHP on steroidogenesis in a murine Leydig tumor cell line (MLTC-1) in vitro. The result of flow cytometry analysis revealed that t...The aim of this study was to evaluate the effects of low concentrations of DEHP and MEHP on steroidogenesis in a murine Leydig tumor cell line (MLTC-1) in vitro. The result of flow cytometry analysis revealed that the proportion of apoptotic cells was significantly increased after the exposure to DEHP. All three genes (P450scc, P450c17, and 38HSD) under study showed an increased expression following exposure to DEHP or MEHP, although some insignificant inhibitory effects appeared in the 10μmol/L treatment group as compared with the controls. It was also found that DEHP or MEHP stimulated INSL3 mRNA and protein especially in the 0.001 μmol/L treatment group. Testosterone secretions were stimulated after the exposure to DEHP or MEHP. Alterations of steroidogenic enzymes and INSL3 in MLTC-1 cells might be involved in the biphasic effects of DEHP/MEHP on androgen production.展开更多
Ozonation of synthetic water containing a type of endocrine disruptor-di-n-butyl phthalate (DBP) was examined. Key impact factors such as pH, temperature, ionic strength, ozone dosage and initial DBP concentration w...Ozonation of synthetic water containing a type of endocrine disruptor-di-n-butyl phthalate (DBP) was examined. Key impact factors such as pH, temperature, ionic strength, ozone dosage and initial DBP concentration were investigated. In addition, the activities of radicals on uncatalysed and catalysed ozonation were studied. The degradation intermediate products were followed and the kinetic of the ozonation were assessed as well. Results revealed that ozonation of DBP followed two mechanisms. Firstly, the reaction rate of direct ozonation was slower at lower pH, temperature, and ionic strength. Secondly, when these factors were increased for indirect radical reaction, higher percentage of DBP was removed with the increase of the initial ozone dosage and the decrease of the initial DBP concentration. In addition, tea-butanol, humic substances and Fe(Ⅱ) affected DBP ozonation through the radical pathway. It was determined that ozonation was restrained by adding tea-butanol for its radical inhibition effect. Furthermore, humic substances enhanced the reaction to some extent, but a slight negative effect would be encountered if the optimum dosage was exceeded. As a matter of fact, Mn(Ⅱ) affected the ozonation by "active sites" mechanism. In the experiment, three different kinds of intermediate products were produced during ozonation, but the amount of products for each one of them decreased as pH, temperature, ionic strength and initial ozone dosage increased. A kinetic equation of the reaction between ozone and DBP was obtained.展开更多
Objective The biodegradation characteristics of di-n-butyl phthalate (DBP), an environmental endocrine disruptor, were studied by the method of dominant bacteria and immobilized microorganisms. Methods Taking DBP as t...Objective The biodegradation characteristics of di-n-butyl phthalate (DBP), an environmental endocrine disruptor, were studied by the method of dominant bacteria and immobilized microorganisms. Methods Taking DBP as the only carbon source to acclimatize the collected activated sludge, the concentration of DBP increased progressively in the process of acclimatization. Plate streaking was used to separate 1 strain of the degradation dominant bacteria after acclimatization. Better conditions to degrade DBP by the bacterium could be obtained through orthogonal experiments and the bacterium was identified. Then the acclimated activated sludge was made to immobilize the microorganism using polyvinyl alcohol as entrapment agent. The immobilized microorganism degraded DBP at different conditions. Results The appropriate conditions to degrade DBP by the dominant bacteria were: degradation time, 32 h; DBP concentration, 200 mg/L; rate of shaking incubator, 100 r/min; pH, 7 and temperature, 30℃. DBP could be degraded by more than 95% under such conditions. The bacteria were identified as pseudomonas. The proliferated immobilized microorganisms degraded DBP more effectively and more adapted to temperature and pH than the free acclimated activated sludge. Conclusion One strain of DBP degradation dominant bacteria was separated from the acclimatized activated sludge. It could grow with DBP as the only carbon source and energy, and degraded DBP effectively. After having been immobilized and proliferated, the dominant bacteria could keep a higher biological activity and degrade DBP more effectively than activated sludge.展开更多
This study is concerned with the effects of di (2-ethylhexyl) phthalate (DEHP) on two kinds of duckweeds (Spirodela polyrhiza and Lemna minor).The results indicate that DEHP has aquatic toxicity to Spirodela pol...This study is concerned with the effects of di (2-ethylhexyl) phthalate (DEHP) on two kinds of duckweeds (Spirodela polyrhiza and Lemna minor).The results indicate that DEHP has aquatic toxicity to Spirodela polyrhiza at 0.4 mg/L and to Lemna minor at over 0.1 mg/L by changing their physiologic-biochemical characteristics.The contents of duckweed chlorophyll and soluble protein decrease with increasing DEHP concentration after 7 d of exposure.DEHP shows the stimulating role in catalase (CAT) and superoxide dismutase (SOD) systems at relative low levels.At 0.01 mg/L and 0.005 mg/L,SOD activities of Spirodela polyrhiza and Lemna minor reach their peak values respectively,while CAT activity reaches its maximum value at 0.05 mg/L and 0.01 mg/L.When DEHP levels are too high,the protection enzyme system would be destroyed and plant growth is inhibited.The analysis of malondialdehyde (MDA) and Fourier transform infrared spectroscopy manifest that DEHP could affect the tested duckweeds by destroying its cell membranes,and Spirodela polyrhiza is more resistant to DEHP exposure than Lemna minor.展开更多
Immunity is crucial to the health of animals and it can determine their survival and fitness. Di(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer and hence is the most abundant phthalate in the environme...Immunity is crucial to the health of animals and it can determine their survival and fitness. Di(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer and hence is the most abundant phthalate in the environment. Exposure to DEHP is of great concern for human health. In the present study, we tested the hypothesis that exposure to DEHP would suppress T cell-mediated immunity in mice. Twenty adult male Kunming mice were randomly assigned into the control (n = 10) and the DEHP treatment (n = 10) groups. Both groups have free access to food and water, while the mice in the latter group drank DEHP solution (2000 mg/L) for 42 days. T cell-mediated immunity assessed by phytohaemagglutinin (PHA) response was depressed in the DEHP treated mice compared with the controls, however, wet thymus and spleen mass, white blood cells were not influenced by DEHP treatment. Taken together, different immunological parameters responded differently to DEHP treatment in Kunming mice.展开更多
BACKGROUND Di(2-ethylhexyl)phthalate(DEHP)is a common plasticizer known to cause liver injury.Green tea is reported to exert therapeutic effects on heavy metal exposureinduced organ damage.However,limited studies have...BACKGROUND Di(2-ethylhexyl)phthalate(DEHP)is a common plasticizer known to cause liver injury.Green tea is reported to exert therapeutic effects on heavy metal exposureinduced organ damage.However,limited studies have examined the therapeutic effects of green tea polyphenols(GTPs)on DEHP-induced liver damage.AIM To evaluate the molecular mechanism underlying the therapeutic effects of GTPs on DEHP-induced liver damage.METHODS C57BL/6J mice were divided into the following five groups:Control,model[DEHP(1500 mg/kg bodyweight)],treatment[DEHP(1500 mg/kg bodyweight)+GTP(70 mg/kg bodyweight),oil,and GTP(70 mg/kg bodyweight)]groups.After 8 wk,the liver function,blood lipid profile,and liver histopathology were examined.Differentially expressed micro RNAs(miRNAs)and mRNAs in the liver tissues were examined using high-throughput sequencing.Additionally,functional enrichment analysis and immune infiltration prediction were performed.The miRNA-mRNA regulatory axis was elucidated using the starBase database.Protein expression was evaluated using immunohistochemistry.RESULTS GTPs alleviated DHEP-induced liver dysfunction,blood lipid dysregulation,fatty liver disease,liver fibrosis,and mitochondrial and endoplasmic reticulum lesions in mice.The infiltration of macrophages,mast cells,and natural killer cells varied between the model and treatment groups.mmu-miR-141-3p(a differentially expressed miRNA),Zcchc24(a differentially expressed mRNA),and Zcchc24(a differentially expressed protein)constituted the miRNA-mRNA-protein regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced liver damage in mice.CONCLUSION This study demonstrated that GTPs mitigate DEHP-induced liver dysfunction,blood lipid dysregulation,fatty liver disease,and partial liver fibrosis,and regulate immune cell infiltration.Additionally,an important miRNAmRNA-protein molecular regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced liver damage was elucidated.展开更多
The prevalence of obesity and type 2 diabetes mellitus(T2DM)has been increasing throughout the world over the past 20 years.Environmental chemicals known to regulate the endocrine system have been considered as a ri...The prevalence of obesity and type 2 diabetes mellitus(T2DM)has been increasing throughout the world over the past 20 years.Environmental chemicals known to regulate the endocrine system have been considered as a risk factor for the development of metabolic diseases.Several people are exposed to environmental chemicals during their lives.展开更多
Objective Di-(2-ethylhexyl) phthalate(DEHP) is a ubiquitous environmental contaminant.As an endocrine disruptor,it seriously threatens human health and ecological environmental safety.This study examines the impact of...Objective Di-(2-ethylhexyl) phthalate(DEHP) is a ubiquitous environmental contaminant.As an endocrine disruptor,it seriously threatens human health and ecological environmental safety.This study examines the impact of intervention with soybean isoflavones(SIF) on DEHP-induced toxicity using a metabonomics approach.Methods Rats were randomly divided into control(H),SIF-treated(A,86 mg/kg body weight),DEHP-treated(B,68 mg/kg),and SIF plus DEHP-treated(D) groups.Rats were given SIF and DEHP daily through diet and gavage,respectively.After 30 d of treatment,rat urine was tested using UPLC/MS with multivariate analysis.Metabolic changes were also evaluated using biochemical assays.Results Metabolomics analyses revealed that p-cresol glucuronide,methyl hippuric acid,N1-methyl-2-pyridone-5-carboxamide,lysophosphatidycholine [18:2(9 Z,12 Z)] {lyso PC [18:2(9 Z,12 Z)]},lyso PC(16:0),xanthosine,undecanedioic acid,and N6-acetyl-l-lysine were present at significantly different levels in control and treatment groups.Conclusion SIF supplementation partially protects rats from DEHP-induced metabolic abnormalities by regulating fatty acid metabolism,antioxidant defense system,amino acid metabolism,and is also involved in the protection of mitochondria.展开更多
Our previous studies revealed the polycyclic aromatic hydrocarbon and phthalic acid esters were the major organic pollutants in the Jialing River and Yangtze River in the Three Gorges area, and they might cause the to...Our previous studies revealed the polycyclic aromatic hydrocarbon and phthalic acid esters were the major organic pollutants in the Jialing River and Yangtze River in the Three Gorges area, and they might cause the toxicity in male fertility when combined. Thus we used di-n-butyl phthalate (DBP) and Benzo(a)pyrene (Bap) as their representatives respectively to explore their effects on the spermatogenesis in male rats. Male Sprague Dawley rats were randomly divided into 4 groups and respectively exposed to corn oil, Bap (5 mg/kg/d), DBP (250 mg/kg/d), and combined doses of Bap (5 mg/kg/d) and DBP (250 mg/kg/d) for 90 days. We observed a significant increase in the stillbirth rate after Bap and combined treatments, while the mean area of seminiferous tubules was reduced after Bap, DBP and combined treatments. Bap and combined treatment had a sup- pressing effect on meiosis in germ cells, which reduced the haploid contents and the ratio between haploid and diploid but increased the tetraploid and diploid contents and the ratio between hap- loid and tetraploid. These effects were more obvious in the combined group. Furthermore, the ex- pression of a number of proteins was changed, of which was associated with the oxidative stress and cAMP/PKA signaling pathway. Our results suggest that Bap has significant toxic effects on male fertility, while the combined treatment of Bap and DBP has more toxic effects.展开更多
目的:探讨邻苯二甲酸二乙基己酯(DEHP)对新生小鼠睾丸及Leydig细胞形态结构及功能的影响。方法:DEHP分别以低、中、高3组剂量[100、200、500mg/(kg·d)]灌胃作用于怀孕12d到产后3d(GD12~PND3)的KM母鼠,观察DEHP对新生雄...目的:探讨邻苯二甲酸二乙基己酯(DEHP)对新生小鼠睾丸及Leydig细胞形态结构及功能的影响。方法:DEHP分别以低、中、高3组剂量[100、200、500mg/(kg·d)]灌胃作用于怀孕12d到产后3d(GD12~PND3)的KM母鼠,观察DEHP对新生雄性仔鼠体重、睾丸重量、Leydig细胞形态结构和3β-羟基类固醇脱氢酶(3β—HSD)活性、酶反应面积的影响。结果:DEHP作用于母鼠后,其雄性子代幼鼠体重和睾丸重量减轻,睾丸Leydig细胞形态、超微结构发生改变;高剂量组Leydig细胞数量明显增多;低、中剂量组睾酮合成关键酶3β-HSD酶活性下降,酶反应面积减小,但高剂量组在仔鼠出生后15d时酶活性降低[(吸光度值(0.154±0.011)1)8空白对照组(0.222±0.013),P〈0.01],而酶反应面积增大[(6303.0±745.6)μm^2 vs 空白对照组(5091.4±214.4)μm^2,P〈0.01)]。结论:DEHP能影响新生雄性小鼠体重、睾丸重量、Leydig细胞的形态结构和3B—HSD活性,具有抗雄激素效应。展开更多
基金funded by the Polish Ministry of Science and Higher Education(2004‐2007 project no. 2PO5D2926)
文摘Objective The aim of the present study was to investigate the effects of paternal Di‐N‐butyl‐phthalate (DBP) exposure pre‐ and postnatally on F1 generation offspring,and prenatally on F2 generation offspring.Methods Male mice were exposed to either 500 mg/kg or 2 000 mg/kg of DBP for 8 weeks,and mated with non‐exposed females.Three‐quarters of the females were sacrificed a day prior to parturition,and examined for the number of living and dead implantations,and incidence of gross malformations.Pups from the remaining females were assessed for developmental markers,growth parameters,as well as sperm quantity and quality.Results There were no changes in the fertility of parents and in intrauterine development of the offspring.Pups of DBP‐exposed males demonstrated growth‐retardation.Following paternal exposure to 500 mg/kg bw of DBP,there were almost twice the number of males than females born in the F1 generation.F1 generation females had a 2.5‐day delay in vaginal opening.Paternal exposure to 2 000 mg/kg bw of DBP increased the incidence of sperm head malformations in F1 generation males;however,there were no changes in the fertility and viability of foetuses in the F2 generation.Conclusion Paternal DBP exposure may disturb the sex ratio of the offspring,delay female sexual maturation,and deteriorate the sperm quality of F1 generation males.
基金financially supported by the Key Project of International Cooperation from the Chinese Ministry of Science and Technology(2010DFA31790)the China National Natural Science Foundation of China(51136002)China Key Technologies R&D Program(2012BAJ02B03)
文摘Objective To investigate the relationship between atopic allergy and depression and the role of DBP in the development of depression. Methods BALB/c mice were randomly divided into eight groups:saline;ovalbumin (OVA)-immunized;saline+DBP (0.45 mg/kg·183;d); saline+DBP (45 mg/kg·d); DBP (0.45 mg/kg·d) OVA-immunized; DBP (45 mg/kg·d) OVA-immunized; saline+hydrocortisone (30 mg/kg·d); and hydrocortisone (30 mg/kg·d)-exposed OVA-immunized. Behavior (e.g. open-field, tail suspension, and forced swimming tests), viscera coefficients (brain and spleen), oxidative damage [e.g. reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH)], as well as levels of IgE and IL-4, were then analyzed. Results In the saline and OVA groups, the degree of depression symptoms in mice increased with increasing DBP concentration. Additionally, the OVA-immunity groups were associated with more serious depressive behavior compared with the same exposure concentration in the saline group. Oxidative damage was associated with a dose-dependent increase in DBP in the different groups. IL-4 and IgE levels were associated with low-dose DBP stimulation, which changed to high-dose inhibition with increasing DBP exposure, possibly due to spleen injury seen at high DBP concentrations.Conclusion Development of an atopic allergy has the potential to increase the risk of depression in mice, and it seems that DBP helps OVA to exert its effect in our present model. Moreover, the results of our study implicate a certain connection between brain oxidative stress and depression, which deserves a further exploration.
文摘Human beings are increasingly exposed to phthalates,which are a group of chemicals used to make plastics more flexible and harder to break,and simultaneously ingesting abundant food emulsifiers via daily diet.The purpose of this study was to investigate the effect of the food emulsifier glycerin monostearate(GMS)on male reproductive toxicity caused by di(2-ethylhexyl)phthalate(DEHP,one of the phthalates)and explore the underlying mechanism.Thirty male Sprague-Dawley rats were randomly divided into control group,DEHP group and DEHP+GMS group.Rats in the DEHP group and DEHP+GMS group were orally administered with 200 mg/kg/d DEHP with or without 20 mg/kg/d GMS.After 30 days of continuous intervention,it was found that the serum testosterone level was significantly lowered in DEHP group and DEHP+GMS group than that in control group(P<0.01).The serum testosterone level and the relative testis weight were significantly decreased in the DEHP+GMS group as compared with those in the DEHP group and control group(P<0.05).More spermatids were observed to be shed off in DEHP+GMS group than in DEHP group.The expression levels of cell cycle checkpoint kinase 1(Chkl),cell division cycle gene 2(Cdc2),and cyclin-dependent kinase 2(CDK2)were down-regulated in DEHP group,and this tendency was more significant in DEHP+GMS group(P<0.05 or P<0.01).There was no significant difference in the P-glycoprotein(P-gp)expression between DEHP group and control group.However,P-gp was markedly down-regulated in DEHP+GMS group(P<O.Ol).The results indicated that the food emulsifier GMS aggravated the toxicity of DEHP on male reproduction by inhibiting the cell cycle of testicular cells and the expression of P-gp in testis tissues.
基金supported by the 12th five-year national science and technology support plan(2011BAK10B05-02)
文摘Objective To estimate the daily intake of DEHP among workers in flavoring factories. Methods 71 workers in two flavoring manufacturers, 27 administrators in those factories and 31 laboratory technicians in a research institute were recruited and assigned to exposure group, control group 1 and control group 2 respectively. Their urinary DEHP metabolites, mono(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), were detected by isotope dilution-ultra performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS). The urinary metabolites concentrations were converted into DEHP intake levels using two pharmacokinetic models: the urine creatinine-excretion (UCE) one and the urine volume (UV) one. Results No significant differences were found among the three groups. Based on the urinary concentrations of Z3MEHP, we got a median daily DEHP intake of 3.22 or 1.85 μg/kg body-weight/day applying the UV or UCE models respectively. Depending on the UV model, three subjects (2.34%) exceeded the RfD value given by US EPA and the P50 of estimate daily DEHP intakes accounted for 16.10% of the RfD value. No subjects exceeded the limitation depending on the UCE model. Conclusion The workers in flavoring factories were not supposed to be the high DEHP exposure ones and their exposure level remained at a low risk.
基金ACKNOWLEDGMENTS We gratefully acknowledge the assistance of Feng Chen with the statistical analysis. The study was supported by grants from the National Basic Research Program of China (973 Program) (No. 2009CB941703), Jiangsu Provincial Natural Science Funds (No. BK2007235) and the National Natural Science Foundation of China (No. 30901222).
文摘Di-n-butyl phthalate (DBP) is an endocrine-disrupting chemical that has the potential to affect male reproduction. However, the reproductive effects of low-dose DBP are still not well known, especially at the molecular level. In the present study, pubertal male Sprague-Dawley rats were orally administered DBP at a wide range of doses (0.1, 1.0, 10, 100 and 500 mg kg^-1 day^-1) for 30 days. The selected end points included reproductive organ weights, testicular histopathology and serum hormonal levels. Additionally, proteomic analysis was performed to identify proteins that are differentially expressed as a result of exposure to DBP at low doses (0.1, 1.0 and 10 mg kg^-1 day^-1). Toxic effects were observed in the high-dose groups, including anomalous development of testes and epididymides, severe atrophy of seminiferous tubules, loss of spermatogenesis and abnormal levels of serum hormones. Treatment with low doses of DBP seemed to exert a 'stimulative effect' on the serum hormones. Proteomics analysis of rat testes showed 20 differentially expressed proteins. Among these proteins, alterations in the expression of HnRNPA2/B1, vimentin and superoxide dismutase 1 (SOD1) were further confirmed by Western blot and immunohistochemistry. Taken together, we conclude that high doses of DBP led to testicular toxicity, and low doses of DBP led to changes in the expression of proteins involved in spermatogenesis as well as changes in the number and function of Sertoli and Leydig cells, although no obvious morphological changes appeared. The identification of these differentially expressed proteins provides important information about the mechanisms underlying the effects of DBP on male rat reproduction.
基金supported by the National Natural Science Foundation of China(No.81273028)
文摘The aim of this study was to evaluate the effects of low concentrations of DEHP and MEHP on steroidogenesis in a murine Leydig tumor cell line (MLTC-1) in vitro. The result of flow cytometry analysis revealed that the proportion of apoptotic cells was significantly increased after the exposure to DEHP. All three genes (P450scc, P450c17, and 38HSD) under study showed an increased expression following exposure to DEHP or MEHP, although some insignificant inhibitory effects appeared in the 10μmol/L treatment group as compared with the controls. It was also found that DEHP or MEHP stimulated INSL3 mRNA and protein especially in the 0.001 μmol/L treatment group. Testosterone secretions were stimulated after the exposure to DEHP or MEHP. Alterations of steroidogenic enzymes and INSL3 in MLTC-1 cells might be involved in the biphasic effects of DEHP/MEHP on androgen production.
基金The National Science Fund for Distinguished Young Scholars (No. 50225824), the National Natural Science Foundation of China(No. 50538090) and the Beijing Academic Innovation Group in Sustainable Water/Waste Recycle Technologies (No. BJE10016200611)
文摘Ozonation of synthetic water containing a type of endocrine disruptor-di-n-butyl phthalate (DBP) was examined. Key impact factors such as pH, temperature, ionic strength, ozone dosage and initial DBP concentration were investigated. In addition, the activities of radicals on uncatalysed and catalysed ozonation were studied. The degradation intermediate products were followed and the kinetic of the ozonation were assessed as well. Results revealed that ozonation of DBP followed two mechanisms. Firstly, the reaction rate of direct ozonation was slower at lower pH, temperature, and ionic strength. Secondly, when these factors were increased for indirect radical reaction, higher percentage of DBP was removed with the increase of the initial ozone dosage and the decrease of the initial DBP concentration. In addition, tea-butanol, humic substances and Fe(Ⅱ) affected DBP ozonation through the radical pathway. It was determined that ozonation was restrained by adding tea-butanol for its radical inhibition effect. Furthermore, humic substances enhanced the reaction to some extent, but a slight negative effect would be encountered if the optimum dosage was exceeded. As a matter of fact, Mn(Ⅱ) affected the ozonation by "active sites" mechanism. In the experiment, three different kinds of intermediate products were produced during ozonation, but the amount of products for each one of them decreased as pH, temperature, ionic strength and initial ozone dosage increased. A kinetic equation of the reaction between ozone and DBP was obtained.
基金This work was supported by National Natural Science Foundation of China (Grant No. 30271104).
文摘Objective The biodegradation characteristics of di-n-butyl phthalate (DBP), an environmental endocrine disruptor, were studied by the method of dominant bacteria and immobilized microorganisms. Methods Taking DBP as the only carbon source to acclimatize the collected activated sludge, the concentration of DBP increased progressively in the process of acclimatization. Plate streaking was used to separate 1 strain of the degradation dominant bacteria after acclimatization. Better conditions to degrade DBP by the bacterium could be obtained through orthogonal experiments and the bacterium was identified. Then the acclimated activated sludge was made to immobilize the microorganism using polyvinyl alcohol as entrapment agent. The immobilized microorganism degraded DBP at different conditions. Results The appropriate conditions to degrade DBP by the dominant bacteria were: degradation time, 32 h; DBP concentration, 200 mg/L; rate of shaking incubator, 100 r/min; pH, 7 and temperature, 30℃. DBP could be degraded by more than 95% under such conditions. The bacteria were identified as pseudomonas. The proliferated immobilized microorganisms degraded DBP more effectively and more adapted to temperature and pH than the free acclimated activated sludge. Conclusion One strain of DBP degradation dominant bacteria was separated from the acclimatized activated sludge. It could grow with DBP as the only carbon source and energy, and degraded DBP effectively. After having been immobilized and proliferated, the dominant bacteria could keep a higher biological activity and degrade DBP more effectively than activated sludge.
基金supported by the National Natural Science Foundation of China (Grant Nos.40973073,40830744)the Shanghai Leading Academic Discipline Project (Grant No.S30109)+1 种基金the National Key Technology Research and Development Program in the 11th Five Year Plan of China (Grant Nos.2008BAC32B03,2009BAA24B04)the Natural Science Foundation of the Science and Technology Commission of Shanghai Municipality (Grant No.09ZR1411300)
文摘This study is concerned with the effects of di (2-ethylhexyl) phthalate (DEHP) on two kinds of duckweeds (Spirodela polyrhiza and Lemna minor).The results indicate that DEHP has aquatic toxicity to Spirodela polyrhiza at 0.4 mg/L and to Lemna minor at over 0.1 mg/L by changing their physiologic-biochemical characteristics.The contents of duckweed chlorophyll and soluble protein decrease with increasing DEHP concentration after 7 d of exposure.DEHP shows the stimulating role in catalase (CAT) and superoxide dismutase (SOD) systems at relative low levels.At 0.01 mg/L and 0.005 mg/L,SOD activities of Spirodela polyrhiza and Lemna minor reach their peak values respectively,while CAT activity reaches its maximum value at 0.05 mg/L and 0.01 mg/L.When DEHP levels are too high,the protection enzyme system would be destroyed and plant growth is inhibited.The analysis of malondialdehyde (MDA) and Fourier transform infrared spectroscopy manifest that DEHP could affect the tested duckweeds by destroying its cell membranes,and Spirodela polyrhiza is more resistant to DEHP exposure than Lemna minor.
文摘Immunity is crucial to the health of animals and it can determine their survival and fitness. Di(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer and hence is the most abundant phthalate in the environment. Exposure to DEHP is of great concern for human health. In the present study, we tested the hypothesis that exposure to DEHP would suppress T cell-mediated immunity in mice. Twenty adult male Kunming mice were randomly assigned into the control (n = 10) and the DEHP treatment (n = 10) groups. Both groups have free access to food and water, while the mice in the latter group drank DEHP solution (2000 mg/L) for 42 days. T cell-mediated immunity assessed by phytohaemagglutinin (PHA) response was depressed in the DEHP treated mice compared with the controls, however, wet thymus and spleen mass, white blood cells were not influenced by DEHP treatment. Taken together, different immunological parameters responded differently to DEHP treatment in Kunming mice.
基金Guangdong Provincial Department of Science and Technology,Science and Technology Plan Project,Journal of Jinan University High-Level Science and Technology Journal Construction Project,No.2021B121020012Guangdong Provincial Administration of Traditional Chinese Medicine,Traditional Chinese Medicine Research Project,No.20213005.
文摘BACKGROUND Di(2-ethylhexyl)phthalate(DEHP)is a common plasticizer known to cause liver injury.Green tea is reported to exert therapeutic effects on heavy metal exposureinduced organ damage.However,limited studies have examined the therapeutic effects of green tea polyphenols(GTPs)on DEHP-induced liver damage.AIM To evaluate the molecular mechanism underlying the therapeutic effects of GTPs on DEHP-induced liver damage.METHODS C57BL/6J mice were divided into the following five groups:Control,model[DEHP(1500 mg/kg bodyweight)],treatment[DEHP(1500 mg/kg bodyweight)+GTP(70 mg/kg bodyweight),oil,and GTP(70 mg/kg bodyweight)]groups.After 8 wk,the liver function,blood lipid profile,and liver histopathology were examined.Differentially expressed micro RNAs(miRNAs)and mRNAs in the liver tissues were examined using high-throughput sequencing.Additionally,functional enrichment analysis and immune infiltration prediction were performed.The miRNA-mRNA regulatory axis was elucidated using the starBase database.Protein expression was evaluated using immunohistochemistry.RESULTS GTPs alleviated DHEP-induced liver dysfunction,blood lipid dysregulation,fatty liver disease,liver fibrosis,and mitochondrial and endoplasmic reticulum lesions in mice.The infiltration of macrophages,mast cells,and natural killer cells varied between the model and treatment groups.mmu-miR-141-3p(a differentially expressed miRNA),Zcchc24(a differentially expressed mRNA),and Zcchc24(a differentially expressed protein)constituted the miRNA-mRNA-protein regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced liver damage in mice.CONCLUSION This study demonstrated that GTPs mitigate DEHP-induced liver dysfunction,blood lipid dysregulation,fatty liver disease,and partial liver fibrosis,and regulate immune cell infiltration.Additionally,an important miRNAmRNA-protein molecular regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced liver damage was elucidated.
文摘The prevalence of obesity and type 2 diabetes mellitus(T2DM)has been increasing throughout the world over the past 20 years.Environmental chemicals known to regulate the endocrine system have been considered as a risk factor for the development of metabolic diseases.Several people are exposed to environmental chemicals during their lives.
基金supported by the National Natural Science Foundation of China [Grant No.81273079].
文摘Objective Di-(2-ethylhexyl) phthalate(DEHP) is a ubiquitous environmental contaminant.As an endocrine disruptor,it seriously threatens human health and ecological environmental safety.This study examines the impact of intervention with soybean isoflavones(SIF) on DEHP-induced toxicity using a metabonomics approach.Methods Rats were randomly divided into control(H),SIF-treated(A,86 mg/kg body weight),DEHP-treated(B,68 mg/kg),and SIF plus DEHP-treated(D) groups.Rats were given SIF and DEHP daily through diet and gavage,respectively.After 30 d of treatment,rat urine was tested using UPLC/MS with multivariate analysis.Metabolic changes were also evaluated using biochemical assays.Results Metabolomics analyses revealed that p-cresol glucuronide,methyl hippuric acid,N1-methyl-2-pyridone-5-carboxamide,lysophosphatidycholine [18:2(9 Z,12 Z)] {lyso PC [18:2(9 Z,12 Z)]},lyso PC(16:0),xanthosine,undecanedioic acid,and N6-acetyl-l-lysine were present at significantly different levels in control and treatment groups.Conclusion SIF supplementation partially protects rats from DEHP-induced metabolic abnormalities by regulating fatty acid metabolism,antioxidant defense system,amino acid metabolism,and is also involved in the protection of mitochondria.
文摘Our previous studies revealed the polycyclic aromatic hydrocarbon and phthalic acid esters were the major organic pollutants in the Jialing River and Yangtze River in the Three Gorges area, and they might cause the toxicity in male fertility when combined. Thus we used di-n-butyl phthalate (DBP) and Benzo(a)pyrene (Bap) as their representatives respectively to explore their effects on the spermatogenesis in male rats. Male Sprague Dawley rats were randomly divided into 4 groups and respectively exposed to corn oil, Bap (5 mg/kg/d), DBP (250 mg/kg/d), and combined doses of Bap (5 mg/kg/d) and DBP (250 mg/kg/d) for 90 days. We observed a significant increase in the stillbirth rate after Bap and combined treatments, while the mean area of seminiferous tubules was reduced after Bap, DBP and combined treatments. Bap and combined treatment had a sup- pressing effect on meiosis in germ cells, which reduced the haploid contents and the ratio between haploid and diploid but increased the tetraploid and diploid contents and the ratio between hap- loid and tetraploid. These effects were more obvious in the combined group. Furthermore, the ex- pression of a number of proteins was changed, of which was associated with the oxidative stress and cAMP/PKA signaling pathway. Our results suggest that Bap has significant toxic effects on male fertility, while the combined treatment of Bap and DBP has more toxic effects.
文摘目的:探讨邻苯二甲酸二乙基己酯(DEHP)对新生小鼠睾丸及Leydig细胞形态结构及功能的影响。方法:DEHP分别以低、中、高3组剂量[100、200、500mg/(kg·d)]灌胃作用于怀孕12d到产后3d(GD12~PND3)的KM母鼠,观察DEHP对新生雄性仔鼠体重、睾丸重量、Leydig细胞形态结构和3β-羟基类固醇脱氢酶(3β—HSD)活性、酶反应面积的影响。结果:DEHP作用于母鼠后,其雄性子代幼鼠体重和睾丸重量减轻,睾丸Leydig细胞形态、超微结构发生改变;高剂量组Leydig细胞数量明显增多;低、中剂量组睾酮合成关键酶3β-HSD酶活性下降,酶反应面积减小,但高剂量组在仔鼠出生后15d时酶活性降低[(吸光度值(0.154±0.011)1)8空白对照组(0.222±0.013),P〈0.01],而酶反应面积增大[(6303.0±745.6)μm^2 vs 空白对照组(5091.4±214.4)μm^2,P〈0.01)]。结论:DEHP能影响新生雄性小鼠体重、睾丸重量、Leydig细胞的形态结构和3B—HSD活性,具有抗雄激素效应。