Purpose-The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.Design/methodology/approach-The expert diagnosis system utilizes statistical and deep ...Purpose-The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.Design/methodology/approach-The expert diagnosis system utilizes statistical and deep learning methods to model the real-time status and historical data features of rail vehicle.Based on data mechanism models,it predicts the lifespan of key components,evaluates the health status of the vehicle and achieves intelligent monitoring and diagnosis of rail vehicle.Findings-The actual operation effect of this system shows that it has improved the intelligent level of the rail vehicle monitoring system,which helps operators to monitor the operation of vehicle online,predict potential risks and faults of vehicle and ensure the smooth and safe operation of vehicle.Originality/value-This system improves the efficiency of rail vehicle operation,scheduling and maintenance through intelligent monitoring and diagnosis of rail vehicle.展开更多
BACKGROUND Artificial intelligence(AI)has potential in the optical diagnosis of colorectal polyps.AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system(CADx)AI for ColoRectal Poly...BACKGROUND Artificial intelligence(AI)has potential in the optical diagnosis of colorectal polyps.AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system(CADx)AI for ColoRectal Polyps(AI4CRP)for the optical diagnosis of diminutive colorectal polyps and to compare the performance with CAD EYE^(TM)(Fujifilm,Tokyo,Japan).CADx influence on the optical diagnosis of an expert endoscopist was also investigated.METHODS AI4CRP was developed in-house and CAD EYE was proprietary software provided by Fujifilm.Both CADxsystems exploit convolutional neural networks.Colorectal polyps were characterized as benign or premalignant and histopathology was used as gold standard.AI4CRP provided an objective assessment of its characterization by presenting a calibrated confidence characterization value(range 0.0-1.0).A predefined cut-off value of 0.6 was set with values<0.6 indicating benign and values≥0.6 indicating premalignant colorectal polyps.Low confidence characterizations were defined as values 40%around the cut-off value of 0.6(<0.36 and>0.76).Self-critical AI4CRP’s diagnostic performances excluded low confidence characterizations.RESULTS AI4CRP use was feasible and performed on 30 patients with 51 colorectal polyps.Self-critical AI4CRP,excluding 14 low confidence characterizations[27.5%(14/51)],had a diagnostic accuracy of 89.2%,sensitivity of 89.7%,and specificity of 87.5%,which was higher compared to AI4CRP.CAD EYE had a 83.7%diagnostic accuracy,74.2%sensitivity,and 100.0%specificity.Diagnostic performances of the endoscopist alone(before AI)increased nonsignificantly after reviewing the CADx characterizations of both AI4CRP and CAD EYE(AI-assisted endoscopist).Diagnostic performances of the AI-assisted endoscopist were higher compared to both CADx-systems,except for specificity for which CAD EYE performed best.CONCLUSION Real-time use of AI4CRP was feasible.Objective confidence values provided by a CADx is novel and self-critical AI4CRP showed higher diagnostic performances compared to AI4CRP.展开更多
Some ideas in the development of fault diagnosis system for spacecraft are introduced. Firstly, the architecture of spacecraft fault diagnosis is proposed hierarchically with four diagnosis frames, i.e., system level,...Some ideas in the development of fault diagnosis system for spacecraft are introduced. Firstly, the architecture of spacecraft fault diagnosis is proposed hierarchically with four diagnosis frames, i.e., system level, subsystem level, component level and element level. Secondly, a hierarchical diagnosis model is expressed with four layers, i.e., sensors layer, function layer, behavior layer and structure layer. These layers are used to work together to accomplish the fault alarm, diagnosis and localization. Thirdly, a fault-tree-oriented hybrid knowledge representation based on frame and generalized rule and its relevant reasoning strategy is put forward. Finally, a diagnosis case for spacecraft power system is exemplified combining the above with a powerful expert system development tool G2.展开更多
Disease diagnosis is a challenging task due to a large number of associated factors.Uncertainty in the diagnosis process arises frominaccuracy in patient attributes,missing data,and limitation in the medical expert’s...Disease diagnosis is a challenging task due to a large number of associated factors.Uncertainty in the diagnosis process arises frominaccuracy in patient attributes,missing data,and limitation in the medical expert’s ability to define cause and effect relationships when there are multiple interrelated variables.This paper aims to demonstrate an integrated view of deploying smart disease diagnosis using the Internet of Things(IoT)empowered by the fuzzy inference system(FIS)to diagnose various diseases.The Fuzzy Systemis one of the best systems to diagnose medical conditions because every disease diagnosis involves many uncertainties,and fuzzy logic is the best way to handle uncertainties.Our proposed system differentiates new cases provided symptoms of the disease.Generally,it becomes a time-sensitive task to discriminate symptomatic diseases.The proposed system can track symptoms firmly to diagnose diseases through IoT and FIS smartly and efficiently.Different coefficients have been employed to predict and compute the identified disease’s severity for each sign of disease.This study aims to differentiate and diagnose COVID-19,Typhoid,Malaria,and Pneumonia.This study used the FIS method to figure out the disease over the use of given data related to correlating with input symptoms.MATLAB tool is utilised for the implementation of FIS.Fuzzy procedure on the aforementioned given data presents that affectionate disease can derive from the symptoms.The results of our proposed method proved that FIS could be utilised for the diagnosis of other diseases.This study may assist doctors,patients,medical practitioners,and other healthcare professionals in early diagnosis and better treat diseases.展开更多
Diabetic retinopathy(DR)diagnosis through digital fundus images requires clinical experts to recognize the presence and importance of many intricate features.This task is very difficult for ophthalmologists and timeco...Diabetic retinopathy(DR)diagnosis through digital fundus images requires clinical experts to recognize the presence and importance of many intricate features.This task is very difficult for ophthalmologists and timeconsuming.Therefore,many computer-aided diagnosis(CAD)systems were developed to automate this screening process ofDR.In this paper,aCAD-DR system is proposed based on preprocessing and a pre-train transfer learningbased convolutional neural network(PCNN)to recognize the five stages of DR through retinal fundus images.To develop this CAD-DR system,a preprocessing step is performed in a perceptual-oriented color space to enhance the DR-related lesions and then a standard pre-train PCNN model is improved to get high classification results.The architecture of the PCNN model is based on three main phases.Firstly,the training process of the proposed PCNN is accomplished by using the expected gradient length(EGL)to decrease the image labeling efforts during the training of the CNN model.Secondly,themost informative patches and images were automatically selected using a few pieces of training labeled samples.Thirdly,the PCNN method generated useful masks for prognostication and identified regions of interest.Fourthly,the DR-related lesions involved in the classification task such as micro-aneurysms,hemorrhages,and exudates were detected and then used for recognition of DR.The PCNN model is pre-trained using a high-end graphical processor unit(GPU)on the publicly available Kaggle benchmark.The obtained results demonstrate that the CAD-DR system outperforms compared to other state-of-the-art in terms of sensitivity(SE),specificity(SP),and accuracy(ACC).On the test set of 30,000 images,the CAD-DR system achieved an average SE of 93.20%,SP of 96.10%,and ACC of 98%.This result indicates that the proposed CAD-DR system is appropriate for the screening of the severity-level of DR.展开更多
The function-layer model and working model of collaborative remote fault diagnosis system (FDS), which includes three layers: task layer, collaboration layer and diagnosing layer, are proposed. The running mechanis...The function-layer model and working model of collaborative remote fault diagnosis system (FDS), which includes three layers: task layer, collaboration layer and diagnosing layer, are proposed. The running mechanism of the system is discussed. A collaborative FDS may consist of several subsystems running at different places and the subsystem consists of several fimction modules. A structure centered on data-bus is adopted in subsystem. All the function modules in subsystem are encapsulated into software intelligent chips (SICs) and SIC can but connect with data-bus. So, it is feasible to reuse these diagnosis fimction modules and the structure of subsystem in different diagnosis applications. With the reconfigurable SICs, several different function modules can reconstruct quickly some different diagnosis subsystems in different combinations, and some subsystems can also reconfigure a specified collaborative FDS.展开更多
The research and practice of CIMS and FMS has brought about a great development to advanced manufacturing systems for decades. The experience of failure and success during the process of development is a revelation an...The research and practice of CIMS and FMS has brought about a great development to advanced manufacturing systems for decades. The experience of failure and success during the process of development is a revelation and reference for the design of a fault diagnosis system. This paper focuses on its function of directing to the design of a fault diagnosis system in terms of the flexibility of the system, the human's importance in the system, and the design of a distributed system. In view of the tendency of CIMS and FMS, the article also states the principle that the new fault diagnosis system should be improved by enhancing hardware in software, remote Internet service, and sustainable development.展开更多
Knowledge graph technology has distinct advantages in terms of fault diagnosis.In this study,the control rod drive mechanism(CRDM)of the liquid fuel thorium molten salt reactor(TMSR-LF1)was taken as the research objec...Knowledge graph technology has distinct advantages in terms of fault diagnosis.In this study,the control rod drive mechanism(CRDM)of the liquid fuel thorium molten salt reactor(TMSR-LF1)was taken as the research object,and a fault diagnosis system was proposed based on knowledge graph.The subject–relation–object triples are defined based on CRDM unstructured data,including design specification,operation and maintenance manual,alarm list,and other forms of expert experience.In this study,we constructed a fault event ontology model to label the entity and relationship involved in the corpus of CRDM fault events.A three-layer robustly optimized bidirectional encoder representation from transformers(RBT3)pre-training approach combined with a text convolutional neural network(TextCNN)was introduced to facilitate the application of the constructed CRDM fault diagnosis graph database for fault query.The RBT3-TextCNN model along with the Jieba tool is proposed for extracting entities and recognizing the fault query intent simultaneously.Experiments on the dataset collected from TMSR-LF1 CRDM fault diagnosis unstructured data demonstrate that this model has the potential to improve the effect of intent recognition and entity extraction.Additionally,a fault alarm monitoring module was developed based on WebSocket protocol to deliver detailed information about the appeared fault to the operator automatically.Furthermore,the Bayesian inference method combined with the variable elimination algorithm was proposed to enable the development of a relatively intelligent and reliable fault diagnosis system.Finally,a CRDM fault diagnosis Web interface integrated with graph data visualization was constructed,making the CRDM fault diagnosis process intuitive and effective.展开更多
Induction motor faults including mechanical and electrical faults are reviewed.The fault diagnosis methods are summarized.To analyze the influence of stator current,torque,speed and rotor current on faulted bars,a tim...Induction motor faults including mechanical and electrical faults are reviewed.The fault diagnosis methods are summarized.To analyze the influence of stator current,torque,speed and rotor current on faulted bars,a time-stepping transient finite element(FE)model of induction motor with bars faulted is created in this paper.With wavelet package analysis method and FFT method, the simulation result of finite element is analyzed.Based on the simulation analysis,the on-line fault diagnosis system of induction motor with bars faulted is developed.With the speed of broken bars motor changed from 1 478 r/min to 1 445 r/min,the FFT power spectra and the wavelet package decoupling factors are given.The comparison result shows that the on-line diagnosis system can detect broken-bar fault efficiently.展开更多
Aiming at the concept of "diagnosis", a simple and effective broadband radar cross section (RCS) measurement system is constructed, and some multi-dimensional scattering properties diagnosis techniques are present...Aiming at the concept of "diagnosis", a simple and effective broadband radar cross section (RCS) measurement system is constructed, and some multi-dimensional scattering properties diagnosis techniques are presented based on the system. Firstly, a stepped-frequency signal is employed to achieve high range resolution, combining with a variety of signal processing tech- niques. Secondly, cross-range resolution is gained with a rotating table, and the high-resolution two-dimensional (2-D) imaging of the scale model is obtained by the microwave imaging theory. Finally, two receiving antennas with a small distance in altitude are used, and the three-dimensional (3-D) height distribution of scattering points on the scale model is extracted from the phase of images. Some typical bodies and a scale aircraft model are diagnosed in an anechoic chamber. The experimental results show that, after scaling with a metal sphere, the accurate one- dimensional (l-D) RCS pattern of the model is obtained, and it has a large dynamic range. When the bandwidth of the transmitting signal is 4 GHz, the resolution of the 2-D image can reach to 0.037 5 m. The 3-D height distribution of scattering points is given by interferometric measurement. This paper provides a feasible way to obtain high-precision scattering properties parameters of the scale aircraft model in a conventional rectangular anechoic chamber.展开更多
Leaching process is the first step in zinc hydrometallurgy, which involves the complex chemical reactions for dissolving zinc bearing material in dilute sulfuric acid. Ensuring the safe running of the process is a key...Leaching process is the first step in zinc hydrometallurgy, which involves the complex chemical reactions for dissolving zinc bearing material in dilute sulfuric acid. Ensuring the safe running of the process is a key point in the operation. An expert fault diagnosis system for the leaching process was proposed, which has been implemented in a nonferrous metals smeltery. The system architecture and the diagnosis procedure were presented, and the rule models with the certainty factor were constructed based on the empirical knowledge, empirical data and statistical results on past fault countermeasures, and an expert reasoning strategy was proposed which employs the rule models and Beyes presentation and combines forward chaining and backward chaining. [展开更多
A research on maintenance oriented remote monitoring and diagnosis modular as well as the data transportation technique is carried out. An opened and modularized data share framework integrated with virtual graphic tr...A research on maintenance oriented remote monitoring and diagnosis modular as well as the data transportation technique is carried out. An opened and modularized data share framework integrated with virtual graphic transportation is presented to realize the data exchange. As a result, it implements a real-time monitoring, diagnosis and maintenance system based on WWW. An effective support technique for the real-time remote fault diagnosis, maintenance and entire life cycle design of products is supplied.展开更多
A type of remote monitoring and diagnosis system is brought forward which based on Matlab Web Server.Firstly,wavelet packet decomposition is introduced to acquire energy features of which reflect hydrogenerator sets p...A type of remote monitoring and diagnosis system is brought forward which based on Matlab Web Server.Firstly,wavelet packet decomposition is introduced to acquire energy features of which reflect hydrogenerator sets performance to be Feature Parameter.Then these Feature Parameters can be adopted as BP Neural Network input variable to realize fault diagnosis.Most of all,it is the first time to adopt Matlab Web Server to hydro-generator sets faults diagnosis field to implement distributed remote monitoring and diagnosis system.Therefore,remote diagnosis application is independent from the OS used on server side.There is no need for software maintenance by clients.And clients can finish remote diagnosis by Web Browser and without installation of Matlab-software.Client users can monitor and diagnose hydro-generator sets by Browser.Finally,further research work is pointed out such as hydro-generator sets fault modeling,accelerating BP Neural Network learning speed and convergence property,improving data transfer speed of Matlab Web Server to meet the needs of real-time diagnosis for hydropower generator sets.展开更多
Through investigating intelligent diagnosis method of Computational Intelligence (CI) and studying its application in fault feature extraction, a gear fault detection and Virtual Instrument Diagnostic System is develo...Through investigating intelligent diagnosis method of Computational Intelligence (CI) and studying its application in fault feature extraction, a gear fault detection and Virtual Instrument Diagnostic System is developed by using the two hybrid programming method which combines both advantages of VC++ and MATLAB. The interface is designed by VC++ and the calculation of test data, signal processing and graphical display are completed by MATLAB. The pro-gram converted from M-file to VC++ is completed by interface software, and a various multi-functional gear fault di-agnosis software system is successfully obtained. The software system, which has many functions including the intro-duction of gear vibration signals, signal processing, graphical display, fault detection and diagnosis, monitoring and so on, especially, the ability of diagnosing gear faults. The method has an important application in the field of mechanical fault diagnosis.展开更多
Large water pump motor,whose operation decides the reliability of the whole production line,plays a very important role.Therefore,its online condition monitoring can help companies better know its operation,process fa...Large water pump motor,whose operation decides the reliability of the whole production line,plays a very important role.Therefore,its online condition monitoring can help companies better know its operation,process fault analysis and protection.The essay mainly studies and designs large water pump motor′s real time vibration monitoring and fault diagnosis system.The essay completes the systems project design,the establishment of the system and performance test.Eddy-currentsensor,XM-120 vibration module,XM-320 axial translation module,XM-362 temperature module,XM-360 process amount module and XM-500 gateway module are used to measure the axial vibration and displacement of main motors.Laboratory tests prove that the system can meet the requirements of motor vibration monitoring.展开更多
Traditional fault diagnosis systems of rolling mills mostly use single machine monitoring net,which leads the re- al-time data running only in the enterprise locally and can not monitor and manage the high-speed wire ...Traditional fault diagnosis systems of rolling mills mostly use single machine monitoring net,which leads the re- al-time data running only in the enterprise locally and can not monitor and manage the high-speed wire rolling mills between units, workshops and factories concentratedly.A new-type structure of remote diagnosis system for high-speed wire rolling mills is pre- sented in this paper.The signal processing,computer network and remote diagnosis etc techniques are used to predictive maintenance manage the rolling mills units in this system.The new structure reinforced the remote feedback function,made up the existing fault diagnosis systems’ insufficiency in the extension and the function,promoted resource sharing and avoided the repeat develop- ment.The remote diagnosis example shows that the system can monitor and diagnose the fault information of remote machine timely and effectively.展开更多
From the point of systemic engineering, the general properties of an engineering equipment fault diagnosis system and the studying object of diagnosis engineering -were discussed. With the developing course of fault d...From the point of systemic engineering, the general properties of an engineering equipment fault diagnosis system and the studying object of diagnosis engineering -were discussed. With the developing course of fault diagnosis technology, the relationship between facile diagnosis system and diagnosis engineering were also discussed. The basic structure and feature of a facile diagnosis system -were discussed, and the isomorphic of a facile diagnosis system and precise diagnosis system -was presented. The facile diagnosis requires the perfection of method , pertinence and apriority of knowledge, adaptability of the object being diagnosed and the approach to the aim of the diagnosis result, as -well as th? outstanding of main functions.展开更多
Clinical examination data often have the features of carrying vague information,missing data and incomplete examination records,which lead to higher probabilities of misdiagnosis.A variational recursive-discriminant j...Clinical examination data often have the features of carrying vague information,missing data and incomplete examination records,which lead to higher probabilities of misdiagnosis.A variational recursive-discriminant joint model with fast weights(FWs)scheme is proposed.MIMIC-III data sets are trained and tested,and the results are used to diagnosing.Variational recurrent neural network(VRNN)with FWs can better obtain the temporal features with partly missing data,and discriminant neural network(DNN)is for decision.Moreover,layer regularization(LN)avoids the overflow of loss function and stabilize the dynamic parameters of each layer.For the simulations,10 laboratory tests were selected to predict 10 diseases,1600 samples and 400 samples were used for training and testing,respectively.The test accuracy of disease diagnosis without FWs is 72.55%,and that with FWs is 85.80%.Simulations reveal that the FWs mechanism can effectively optimize the system model,abstracting the features for diagnose,and significantly improve the accuracy of decision-making.展开更多
Objective To evaluate and reduce inter-observer variations in the detection and characterization of pulmonary nodules on digital radiograph (DR) chest images. Methods Two hundreds and thirty-two new posterior-anteri...Objective To evaluate and reduce inter-observer variations in the detection and characterization of pulmonary nodules on digital radiograph (DR) chest images. Methods Two hundreds and thirty-two new posterior-anterior DR chest images were collected from out-patient screening patients. Consensus was reached by two experienced radiologists on the marking, rating, and segmentation of small actionable nodules ranged from 5 to 15 mm in diameter using a computer-aided diagnosis (CAD) system. Both their own nodule findings and the computer's automatic nodule detection results were analyzed to make the consensus. Nodules identified together with corresponding likelihood rating and segmentation results were referred as "Gold Stand- ard". Two un-experienced radiologists were asked to first mark and characterize suspicious nodules independently, then were allowed to consult the computer nodule detection results and change their decisions. Results Large inter-observer variations in pulmonary nodule identification and characterization on DR chest images were observed between un-experienced radiologists. Un-expefienced radiologists could greatly benefit from the CAD system, including substantial decrease of inter-observer variation and improvement of nodule detection rates. Moreover, radiologists with different levels of skillfulness could achieve similar high level performance after using the CAD system. Conclusion The CAD system shows a high potential for providing a valuable assistance to the examination of DR chest images.展开更多
One of the leading causes of mortality worldwide is liver cancer.The earlier the detection of hepatic tumors,the lower the mortality rate.This paper introduces a computer-aided diagnosis system to extract hepatic tumo...One of the leading causes of mortality worldwide is liver cancer.The earlier the detection of hepatic tumors,the lower the mortality rate.This paper introduces a computer-aided diagnosis system to extract hepatic tumors from computed tomography scans and classify them into malignant or benign tumors.Segmenting hepatic tumors from computed tomography scans is considered a challenging task due to the fuzziness in the liver pixel range,intensity values overlap between the liver and neighboring organs,high noise from computed tomography scanner,and large variance in tumors shapes.The proposed method consists of three main stages;liver segmentation using Fast Generalized Fuzzy C-Means,tumor segmentation using dynamic thresholding,and the tumor’s classification into malignant/benign using support vector machines classifier.The performance of the proposed system was evaluated using three liver benchmark datasets,which are MICCAI-Sliver07,LiTS17,and 3Dircadb.The proposed computer adided diagnosis system achieved an average accuracy of 96.75%,sensetivity of 96.38%,specificity of 95.20%and Dice similarity coefficient of 95.13%.展开更多
基金supported by Hunan Province Enterprise Technology Innovation and Entrepreneurship Team Support Program Project,Hunan Province Science and Technology Innovation Leading Talent Project[2023RC1088]Hunan Province Science and Technology Talent Support Project[2023TJ-Z10].
文摘Purpose-The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.Design/methodology/approach-The expert diagnosis system utilizes statistical and deep learning methods to model the real-time status and historical data features of rail vehicle.Based on data mechanism models,it predicts the lifespan of key components,evaluates the health status of the vehicle and achieves intelligent monitoring and diagnosis of rail vehicle.Findings-The actual operation effect of this system shows that it has improved the intelligent level of the rail vehicle monitoring system,which helps operators to monitor the operation of vehicle online,predict potential risks and faults of vehicle and ensure the smooth and safe operation of vehicle.Originality/value-This system improves the efficiency of rail vehicle operation,scheduling and maintenance through intelligent monitoring and diagnosis of rail vehicle.
文摘BACKGROUND Artificial intelligence(AI)has potential in the optical diagnosis of colorectal polyps.AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system(CADx)AI for ColoRectal Polyps(AI4CRP)for the optical diagnosis of diminutive colorectal polyps and to compare the performance with CAD EYE^(TM)(Fujifilm,Tokyo,Japan).CADx influence on the optical diagnosis of an expert endoscopist was also investigated.METHODS AI4CRP was developed in-house and CAD EYE was proprietary software provided by Fujifilm.Both CADxsystems exploit convolutional neural networks.Colorectal polyps were characterized as benign or premalignant and histopathology was used as gold standard.AI4CRP provided an objective assessment of its characterization by presenting a calibrated confidence characterization value(range 0.0-1.0).A predefined cut-off value of 0.6 was set with values<0.6 indicating benign and values≥0.6 indicating premalignant colorectal polyps.Low confidence characterizations were defined as values 40%around the cut-off value of 0.6(<0.36 and>0.76).Self-critical AI4CRP’s diagnostic performances excluded low confidence characterizations.RESULTS AI4CRP use was feasible and performed on 30 patients with 51 colorectal polyps.Self-critical AI4CRP,excluding 14 low confidence characterizations[27.5%(14/51)],had a diagnostic accuracy of 89.2%,sensitivity of 89.7%,and specificity of 87.5%,which was higher compared to AI4CRP.CAD EYE had a 83.7%diagnostic accuracy,74.2%sensitivity,and 100.0%specificity.Diagnostic performances of the endoscopist alone(before AI)increased nonsignificantly after reviewing the CADx characterizations of both AI4CRP and CAD EYE(AI-assisted endoscopist).Diagnostic performances of the AI-assisted endoscopist were higher compared to both CADx-systems,except for specificity for which CAD EYE performed best.CONCLUSION Real-time use of AI4CRP was feasible.Objective confidence values provided by a CADx is novel and self-critical AI4CRP showed higher diagnostic performances compared to AI4CRP.
文摘Some ideas in the development of fault diagnosis system for spacecraft are introduced. Firstly, the architecture of spacecraft fault diagnosis is proposed hierarchically with four diagnosis frames, i.e., system level, subsystem level, component level and element level. Secondly, a hierarchical diagnosis model is expressed with four layers, i.e., sensors layer, function layer, behavior layer and structure layer. These layers are used to work together to accomplish the fault alarm, diagnosis and localization. Thirdly, a fault-tree-oriented hybrid knowledge representation based on frame and generalized rule and its relevant reasoning strategy is put forward. Finally, a diagnosis case for spacecraft power system is exemplified combining the above with a powerful expert system development tool G2.
文摘Disease diagnosis is a challenging task due to a large number of associated factors.Uncertainty in the diagnosis process arises frominaccuracy in patient attributes,missing data,and limitation in the medical expert’s ability to define cause and effect relationships when there are multiple interrelated variables.This paper aims to demonstrate an integrated view of deploying smart disease diagnosis using the Internet of Things(IoT)empowered by the fuzzy inference system(FIS)to diagnose various diseases.The Fuzzy Systemis one of the best systems to diagnose medical conditions because every disease diagnosis involves many uncertainties,and fuzzy logic is the best way to handle uncertainties.Our proposed system differentiates new cases provided symptoms of the disease.Generally,it becomes a time-sensitive task to discriminate symptomatic diseases.The proposed system can track symptoms firmly to diagnose diseases through IoT and FIS smartly and efficiently.Different coefficients have been employed to predict and compute the identified disease’s severity for each sign of disease.This study aims to differentiate and diagnose COVID-19,Typhoid,Malaria,and Pneumonia.This study used the FIS method to figure out the disease over the use of given data related to correlating with input symptoms.MATLAB tool is utilised for the implementation of FIS.Fuzzy procedure on the aforementioned given data presents that affectionate disease can derive from the symptoms.The results of our proposed method proved that FIS could be utilised for the diagnosis of other diseases.This study may assist doctors,patients,medical practitioners,and other healthcare professionals in early diagnosis and better treat diseases.
基金Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University for funding this work through Research Group no.RG-21-07-01.
文摘Diabetic retinopathy(DR)diagnosis through digital fundus images requires clinical experts to recognize the presence and importance of many intricate features.This task is very difficult for ophthalmologists and timeconsuming.Therefore,many computer-aided diagnosis(CAD)systems were developed to automate this screening process ofDR.In this paper,aCAD-DR system is proposed based on preprocessing and a pre-train transfer learningbased convolutional neural network(PCNN)to recognize the five stages of DR through retinal fundus images.To develop this CAD-DR system,a preprocessing step is performed in a perceptual-oriented color space to enhance the DR-related lesions and then a standard pre-train PCNN model is improved to get high classification results.The architecture of the PCNN model is based on three main phases.Firstly,the training process of the proposed PCNN is accomplished by using the expected gradient length(EGL)to decrease the image labeling efforts during the training of the CNN model.Secondly,themost informative patches and images were automatically selected using a few pieces of training labeled samples.Thirdly,the PCNN method generated useful masks for prognostication and identified regions of interest.Fourthly,the DR-related lesions involved in the classification task such as micro-aneurysms,hemorrhages,and exudates were detected and then used for recognition of DR.The PCNN model is pre-trained using a high-end graphical processor unit(GPU)on the publicly available Kaggle benchmark.The obtained results demonstrate that the CAD-DR system outperforms compared to other state-of-the-art in terms of sensitivity(SE),specificity(SP),and accuracy(ACC).On the test set of 30,000 images,the CAD-DR system achieved an average SE of 93.20%,SP of 96.10%,and ACC of 98%.This result indicates that the proposed CAD-DR system is appropriate for the screening of the severity-level of DR.
文摘The function-layer model and working model of collaborative remote fault diagnosis system (FDS), which includes three layers: task layer, collaboration layer and diagnosing layer, are proposed. The running mechanism of the system is discussed. A collaborative FDS may consist of several subsystems running at different places and the subsystem consists of several fimction modules. A structure centered on data-bus is adopted in subsystem. All the function modules in subsystem are encapsulated into software intelligent chips (SICs) and SIC can but connect with data-bus. So, it is feasible to reuse these diagnosis fimction modules and the structure of subsystem in different diagnosis applications. With the reconfigurable SICs, several different function modules can reconstruct quickly some different diagnosis subsystems in different combinations, and some subsystems can also reconfigure a specified collaborative FDS.
文摘The research and practice of CIMS and FMS has brought about a great development to advanced manufacturing systems for decades. The experience of failure and success during the process of development is a revelation and reference for the design of a fault diagnosis system. This paper focuses on its function of directing to the design of a fault diagnosis system in terms of the flexibility of the system, the human's importance in the system, and the design of a distributed system. In view of the tendency of CIMS and FMS, the article also states the principle that the new fault diagnosis system should be improved by enhancing hardware in software, remote Internet service, and sustainable development.
基金the Young Potential Program of Shanghai Institute of Applied Physics,Chinese Academy of Sciences(No.E0553101).
文摘Knowledge graph technology has distinct advantages in terms of fault diagnosis.In this study,the control rod drive mechanism(CRDM)of the liquid fuel thorium molten salt reactor(TMSR-LF1)was taken as the research object,and a fault diagnosis system was proposed based on knowledge graph.The subject–relation–object triples are defined based on CRDM unstructured data,including design specification,operation and maintenance manual,alarm list,and other forms of expert experience.In this study,we constructed a fault event ontology model to label the entity and relationship involved in the corpus of CRDM fault events.A three-layer robustly optimized bidirectional encoder representation from transformers(RBT3)pre-training approach combined with a text convolutional neural network(TextCNN)was introduced to facilitate the application of the constructed CRDM fault diagnosis graph database for fault query.The RBT3-TextCNN model along with the Jieba tool is proposed for extracting entities and recognizing the fault query intent simultaneously.Experiments on the dataset collected from TMSR-LF1 CRDM fault diagnosis unstructured data demonstrate that this model has the potential to improve the effect of intent recognition and entity extraction.Additionally,a fault alarm monitoring module was developed based on WebSocket protocol to deliver detailed information about the appeared fault to the operator automatically.Furthermore,the Bayesian inference method combined with the variable elimination algorithm was proposed to enable the development of a relatively intelligent and reliable fault diagnosis system.Finally,a CRDM fault diagnosis Web interface integrated with graph data visualization was constructed,making the CRDM fault diagnosis process intuitive and effective.
文摘Induction motor faults including mechanical and electrical faults are reviewed.The fault diagnosis methods are summarized.To analyze the influence of stator current,torque,speed and rotor current on faulted bars,a time-stepping transient finite element(FE)model of induction motor with bars faulted is created in this paper.With wavelet package analysis method and FFT method, the simulation result of finite element is analyzed.Based on the simulation analysis,the on-line fault diagnosis system of induction motor with bars faulted is developed.With the speed of broken bars motor changed from 1 478 r/min to 1 445 r/min,the FFT power spectra and the wavelet package decoupling factors are given.The comparison result shows that the on-line diagnosis system can detect broken-bar fault efficiently.
基金supported by the National Natural Science Foundation of China(6120132061371023)
文摘Aiming at the concept of "diagnosis", a simple and effective broadband radar cross section (RCS) measurement system is constructed, and some multi-dimensional scattering properties diagnosis techniques are presented based on the system. Firstly, a stepped-frequency signal is employed to achieve high range resolution, combining with a variety of signal processing tech- niques. Secondly, cross-range resolution is gained with a rotating table, and the high-resolution two-dimensional (2-D) imaging of the scale model is obtained by the microwave imaging theory. Finally, two receiving antennas with a small distance in altitude are used, and the three-dimensional (3-D) height distribution of scattering points on the scale model is extracted from the phase of images. Some typical bodies and a scale aircraft model are diagnosed in an anechoic chamber. The experimental results show that, after scaling with a metal sphere, the accurate one- dimensional (l-D) RCS pattern of the model is obtained, and it has a large dynamic range. When the bandwidth of the transmitting signal is 4 GHz, the resolution of the 2-D image can reach to 0.037 5 m. The 3-D height distribution of scattering points is given by interferometric measurement. This paper provides a feasible way to obtain high-precision scattering properties parameters of the scale aircraft model in a conventional rectangular anechoic chamber.
文摘Leaching process is the first step in zinc hydrometallurgy, which involves the complex chemical reactions for dissolving zinc bearing material in dilute sulfuric acid. Ensuring the safe running of the process is a key point in the operation. An expert fault diagnosis system for the leaching process was proposed, which has been implemented in a nonferrous metals smeltery. The system architecture and the diagnosis procedure were presented, and the rule models with the certainty factor were constructed based on the empirical knowledge, empirical data and statistical results on past fault countermeasures, and an expert reasoning strategy was proposed which employs the rule models and Beyes presentation and combines forward chaining and backward chaining. [
文摘A research on maintenance oriented remote monitoring and diagnosis modular as well as the data transportation technique is carried out. An opened and modularized data share framework integrated with virtual graphic transportation is presented to realize the data exchange. As a result, it implements a real-time monitoring, diagnosis and maintenance system based on WWW. An effective support technique for the real-time remote fault diagnosis, maintenance and entire life cycle design of products is supplied.
基金Sponsored by the National Pandeng Project(Grant No.PD9521907)
文摘A type of remote monitoring and diagnosis system is brought forward which based on Matlab Web Server.Firstly,wavelet packet decomposition is introduced to acquire energy features of which reflect hydrogenerator sets performance to be Feature Parameter.Then these Feature Parameters can be adopted as BP Neural Network input variable to realize fault diagnosis.Most of all,it is the first time to adopt Matlab Web Server to hydro-generator sets faults diagnosis field to implement distributed remote monitoring and diagnosis system.Therefore,remote diagnosis application is independent from the OS used on server side.There is no need for software maintenance by clients.And clients can finish remote diagnosis by Web Browser and without installation of Matlab-software.Client users can monitor and diagnose hydro-generator sets by Browser.Finally,further research work is pointed out such as hydro-generator sets fault modeling,accelerating BP Neural Network learning speed and convergence property,improving data transfer speed of Matlab Web Server to meet the needs of real-time diagnosis for hydropower generator sets.
文摘Through investigating intelligent diagnosis method of Computational Intelligence (CI) and studying its application in fault feature extraction, a gear fault detection and Virtual Instrument Diagnostic System is developed by using the two hybrid programming method which combines both advantages of VC++ and MATLAB. The interface is designed by VC++ and the calculation of test data, signal processing and graphical display are completed by MATLAB. The pro-gram converted from M-file to VC++ is completed by interface software, and a various multi-functional gear fault di-agnosis software system is successfully obtained. The software system, which has many functions including the intro-duction of gear vibration signals, signal processing, graphical display, fault detection and diagnosis, monitoring and so on, especially, the ability of diagnosing gear faults. The method has an important application in the field of mechanical fault diagnosis.
文摘Large water pump motor,whose operation decides the reliability of the whole production line,plays a very important role.Therefore,its online condition monitoring can help companies better know its operation,process fault analysis and protection.The essay mainly studies and designs large water pump motor′s real time vibration monitoring and fault diagnosis system.The essay completes the systems project design,the establishment of the system and performance test.Eddy-currentsensor,XM-120 vibration module,XM-320 axial translation module,XM-362 temperature module,XM-360 process amount module and XM-500 gateway module are used to measure the axial vibration and displacement of main motors.Laboratory tests prove that the system can meet the requirements of motor vibration monitoring.
文摘Traditional fault diagnosis systems of rolling mills mostly use single machine monitoring net,which leads the re- al-time data running only in the enterprise locally and can not monitor and manage the high-speed wire rolling mills between units, workshops and factories concentratedly.A new-type structure of remote diagnosis system for high-speed wire rolling mills is pre- sented in this paper.The signal processing,computer network and remote diagnosis etc techniques are used to predictive maintenance manage the rolling mills units in this system.The new structure reinforced the remote feedback function,made up the existing fault diagnosis systems’ insufficiency in the extension and the function,promoted resource sharing and avoided the repeat develop- ment.The remote diagnosis example shows that the system can monitor and diagnose the fault information of remote machine timely and effectively.
文摘From the point of systemic engineering, the general properties of an engineering equipment fault diagnosis system and the studying object of diagnosis engineering -were discussed. With the developing course of fault diagnosis technology, the relationship between facile diagnosis system and diagnosis engineering were also discussed. The basic structure and feature of a facile diagnosis system -were discussed, and the isomorphic of a facile diagnosis system and precise diagnosis system -was presented. The facile diagnosis requires the perfection of method , pertinence and apriority of knowledge, adaptability of the object being diagnosed and the approach to the aim of the diagnosis result, as -well as th? outstanding of main functions.
基金supported by National Natural Science Foundation of China“Research on non-orthogonal multiple access technology for unauthorized transmission”(No.61771051)“Research on a new emergency positioning system for the integration of visible-light communication and MEMS inertial navigation”(No.61675025)
文摘Clinical examination data often have the features of carrying vague information,missing data and incomplete examination records,which lead to higher probabilities of misdiagnosis.A variational recursive-discriminant joint model with fast weights(FWs)scheme is proposed.MIMIC-III data sets are trained and tested,and the results are used to diagnosing.Variational recurrent neural network(VRNN)with FWs can better obtain the temporal features with partly missing data,and discriminant neural network(DNN)is for decision.Moreover,layer regularization(LN)avoids the overflow of loss function and stabilize the dynamic parameters of each layer.For the simulations,10 laboratory tests were selected to predict 10 diseases,1600 samples and 400 samples were used for training and testing,respectively.The test accuracy of disease diagnosis without FWs is 72.55%,and that with FWs is 85.80%.Simulations reveal that the FWs mechanism can effectively optimize the system model,abstracting the features for diagnose,and significantly improve the accuracy of decision-making.
文摘Objective To evaluate and reduce inter-observer variations in the detection and characterization of pulmonary nodules on digital radiograph (DR) chest images. Methods Two hundreds and thirty-two new posterior-anterior DR chest images were collected from out-patient screening patients. Consensus was reached by two experienced radiologists on the marking, rating, and segmentation of small actionable nodules ranged from 5 to 15 mm in diameter using a computer-aided diagnosis (CAD) system. Both their own nodule findings and the computer's automatic nodule detection results were analyzed to make the consensus. Nodules identified together with corresponding likelihood rating and segmentation results were referred as "Gold Stand- ard". Two un-experienced radiologists were asked to first mark and characterize suspicious nodules independently, then were allowed to consult the computer nodule detection results and change their decisions. Results Large inter-observer variations in pulmonary nodule identification and characterization on DR chest images were observed between un-experienced radiologists. Un-expefienced radiologists could greatly benefit from the CAD system, including substantial decrease of inter-observer variation and improvement of nodule detection rates. Moreover, radiologists with different levels of skillfulness could achieve similar high level performance after using the CAD system. Conclusion The CAD system shows a high potential for providing a valuable assistance to the examination of DR chest images.
文摘One of the leading causes of mortality worldwide is liver cancer.The earlier the detection of hepatic tumors,the lower the mortality rate.This paper introduces a computer-aided diagnosis system to extract hepatic tumors from computed tomography scans and classify them into malignant or benign tumors.Segmenting hepatic tumors from computed tomography scans is considered a challenging task due to the fuzziness in the liver pixel range,intensity values overlap between the liver and neighboring organs,high noise from computed tomography scanner,and large variance in tumors shapes.The proposed method consists of three main stages;liver segmentation using Fast Generalized Fuzzy C-Means,tumor segmentation using dynamic thresholding,and the tumor’s classification into malignant/benign using support vector machines classifier.The performance of the proposed system was evaluated using three liver benchmark datasets,which are MICCAI-Sliver07,LiTS17,and 3Dircadb.The proposed computer adided diagnosis system achieved an average accuracy of 96.75%,sensetivity of 96.38%,specificity of 95.20%and Dice similarity coefficient of 95.13%.