Polymethylmethacrylate (PMMA) coated microcapsules of diclofenac sodium (DFS) were prepared by a modified wa-ter-in-oil-in-water (W1/O/W2) emulsion solvent evaporation method using sodium alginate (SAL) as a matrix ma...Polymethylmethacrylate (PMMA) coated microcapsules of diclofenac sodium (DFS) were prepared by a modified wa-ter-in-oil-in-water (W1/O/W2) emulsion solvent evaporation method using sodium alginate (SAL) as a matrix material in the internal aqueous phase (W1).Their performance with respect to controlled release of the drug in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) were evaluated, and compared with non-matrix microcapsules prepared by the conventional W1/O/W2 emulsion solvent evaporation method. Scanning electron micrographs (SEM) revealed that all the microcapsules were discrete and spherical in shape;however, the surface porosity of the matrix microcap-sules appeared to be less than that of the non-matrix microcapsules. In case of non-matrix microcapsules, an increase in the volume of water in W1 phase resulted in decrease in the drug entrapment efficiency (DEE) along with increase in release of the drug in both SGF and SIF. While in case of matrix microcapsules increase in the amount of SAL in W1 phase and concentration of the coating polymer in organic phase led to increase in DEE of the matrix microcapsules and considerable decrease in the drug release in both SGF and SIF. No interaction between the drug and any of the polymers used to prepare microcapsules was evident from Fourier transform infra-red (FTIR) analysis. The matrix microcapsules prepared using higher concentration of SAL and PMMA released the drug following zero order or Case-II transport model. The matrix microcapsules appeared to be suitable for releasing lesser amounts of DFS in SGF and providing extended release in SIF.展开更多
In this study, the application of sodium bentonite(SB) in formulation of tablets prepared by direct compression for oral administration was tested. Three different model drugs with different solubilities: paracetamol,...In this study, the application of sodium bentonite(SB) in formulation of tablets prepared by direct compression for oral administration was tested. Three different model drugs with different solubilities: paracetamol, diclofenac sodium and metformin HCl were tested. Each drug was mixed with SB at ratio of 50% and the mixtures were subsequently compressed.Compatibility studies were conducted using both Deferential Scanning Calorimeter(DSC)and Fourier Transform Infrared Spectroscopy(FTIR). The dissolution profile for each drug was determined in USP-buffers at different time intervals. Diclofenac sodium in pH 6.8 buffer and paracetamol in both pH 6.8 and pH 4.5 buffers showed extended release. However,metformin HCl showed immediate release at the different pH values. The study showed that using SB was possible to prepare tablets with different release profiles. However, these profiles differ depending on dissolution media and drug type.展开更多
Taking grass carps with the initial weight of about 20g as the research object,the basic feeds of grass carps were added with0.0%,0.1%,0.3%,0.6%,0.8%,and 1% of nano-sustained release sodium butyrate to prepare 6 types...Taking grass carps with the initial weight of about 20g as the research object,the basic feeds of grass carps were added with0.0%,0.1%,0.3%,0.6%,0.8%,and 1% of nano-sustained release sodium butyrate to prepare 6 types of experimental feeds with equal nitrogen and energy.The effects of different concentrations of nano-sustained release sodium butyrate were surveyed on growth and intestinal cell proliferation of grass carps.The experiment was carried out in cages with 50 carps per cage,and each treatment was repeated 3 times for60 days.Experimental results indicated that the addition of nano-sustained release sodium butyrate significantly promoted the growth of grass carps and significantly increased the ratio of intestinal villus to crypt depth.When the addition of nano-sustained release sodium butyrate was0.6%,the weight increase rate,specific growth rate,fullness and intestinal villus height of grass carps were the highest,which was significantly higher than that of the control group(P < 0.05).The study results indicated that addition of appropriate amount of nano-sustained release sodium butyrate can promote the growth of grass carps through increasing the intestinal villus height,and the suitable addition dosage was0.6%.展开更多
In this study, a natural gum mastic was evaluated as a microencapsulating and matrixforming material for sustained drug release. Mastic was characterized for its physicochemical properties. Microparticles were prepare...In this study, a natural gum mastic was evaluated as a microencapsulating and matrixforming material for sustained drug release. Mastic was characterized for its physicochemical properties. Microparticles were prepared by oil-in-oil solvent evaporation method. Matrix tablets were prepared by wet and melt granulation techniques. Diclofenac sodium(DFS) and diltiazem hydrochloride(DLTZ) were used as model drugs. Mastic produced discrete and spherical microspheres with DLTZ and microcapsules with DFS. Particle size and drug loading of microparticles was in the range of 22–62 μm and 50–87%, respectively. Increase in mastic:drug ratio increased microparticle size, improved drug loading and decreased the drug release rate. Microparticles with gum: drug ratio of 2:1 could sustain DLTZ release up to 12 h and released 57% DFS in 12 h. Mastic produced tablets with acceptable pharmacotechnical properties. A 30% w/w of mastic in tablet could sustain DLTZ release for 5 h from wet granulation,and DFS release for 8 h and 11 h from wet and melt granulation, respectively. Results revealed that a natural gum mastic can be used successfully to formulate matrix tablets and microparticles for sustained drug release.展开更多
Coated microneedles(MNs) are widely used for delivering biopharmaceuticals. In this study, a novel gel encapsulated coated MNs(GEC-MNs) was developed. The water-soluble drug coating was encapsulated with sodium algina...Coated microneedles(MNs) are widely used for delivering biopharmaceuticals. In this study, a novel gel encapsulated coated MNs(GEC-MNs) was developed. The water-soluble drug coating was encapsulated with sodium alginate(SA) in situ complexation gel. The manufacturing process of GEC-MNs was optimized for mass production. Compared to the water-soluble coated MNs(72.02% ± 11.49%), the drug delivery efficiency of the optimized GEC-MNs(88.42% ± 6.72%) was steadily increased, and this improvement was investigated through in vitro drug release. The sustained-release of BSA was observed in vitro permeation through the skin. The rhIFN α-1 b GEC-MNs was confirmed to achieve biosafety and 6-month storage stability. Pharmacokinetics of rhIFN α-1 b in GEC-MNs showed a linearly dosedependent relationship. The AUC of rhIFN α-1 b in GEC-MNs(4.51 ng/ml ·h) was bioequivalent to the intradermal(ID) injection(5.36 ng/ml ·h) and significantly higher than water-soluble coated MNs(3.12 ng/ml ·h). The rhIFN α-1 b elimination half-life of GEC-MNs, soluble coated MNs, and ID injection was 18.16, 1.44, and 2.53 h, respectively. The complexation-based GECMNs have proved to be more efficient, stable, and achieve the sustained-release of watersoluble drug in coating MNs, constituting a high value to biopharmaceutical.展开更多
文摘Polymethylmethacrylate (PMMA) coated microcapsules of diclofenac sodium (DFS) were prepared by a modified wa-ter-in-oil-in-water (W1/O/W2) emulsion solvent evaporation method using sodium alginate (SAL) as a matrix material in the internal aqueous phase (W1).Their performance with respect to controlled release of the drug in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) were evaluated, and compared with non-matrix microcapsules prepared by the conventional W1/O/W2 emulsion solvent evaporation method. Scanning electron micrographs (SEM) revealed that all the microcapsules were discrete and spherical in shape;however, the surface porosity of the matrix microcap-sules appeared to be less than that of the non-matrix microcapsules. In case of non-matrix microcapsules, an increase in the volume of water in W1 phase resulted in decrease in the drug entrapment efficiency (DEE) along with increase in release of the drug in both SGF and SIF. While in case of matrix microcapsules increase in the amount of SAL in W1 phase and concentration of the coating polymer in organic phase led to increase in DEE of the matrix microcapsules and considerable decrease in the drug release in both SGF and SIF. No interaction between the drug and any of the polymers used to prepare microcapsules was evident from Fourier transform infra-red (FTIR) analysis. The matrix microcapsules prepared using higher concentration of SAL and PMMA released the drug following zero order or Case-II transport model. The matrix microcapsules appeared to be suitable for releasing lesser amounts of DFS in SGF and providing extended release in SIF.
文摘In this study, the application of sodium bentonite(SB) in formulation of tablets prepared by direct compression for oral administration was tested. Three different model drugs with different solubilities: paracetamol, diclofenac sodium and metformin HCl were tested. Each drug was mixed with SB at ratio of 50% and the mixtures were subsequently compressed.Compatibility studies were conducted using both Deferential Scanning Calorimeter(DSC)and Fourier Transform Infrared Spectroscopy(FTIR). The dissolution profile for each drug was determined in USP-buffers at different time intervals. Diclofenac sodium in pH 6.8 buffer and paracetamol in both pH 6.8 and pH 4.5 buffers showed extended release. However,metformin HCl showed immediate release at the different pH values. The study showed that using SB was possible to prepare tablets with different release profiles. However, these profiles differ depending on dissolution media and drug type.
基金Supported by Science and Technology Planning Project of Changsha City(k1407023-31)
文摘Taking grass carps with the initial weight of about 20g as the research object,the basic feeds of grass carps were added with0.0%,0.1%,0.3%,0.6%,0.8%,and 1% of nano-sustained release sodium butyrate to prepare 6 types of experimental feeds with equal nitrogen and energy.The effects of different concentrations of nano-sustained release sodium butyrate were surveyed on growth and intestinal cell proliferation of grass carps.The experiment was carried out in cages with 50 carps per cage,and each treatment was repeated 3 times for60 days.Experimental results indicated that the addition of nano-sustained release sodium butyrate significantly promoted the growth of grass carps and significantly increased the ratio of intestinal villus to crypt depth.When the addition of nano-sustained release sodium butyrate was0.6%,the weight increase rate,specific growth rate,fullness and intestinal villus height of grass carps were the highest,which was significantly higher than that of the control group(P < 0.05).The study results indicated that addition of appropriate amount of nano-sustained release sodium butyrate can promote the growth of grass carps through increasing the intestinal villus height,and the suitable addition dosage was0.6%.
文摘In this study, a natural gum mastic was evaluated as a microencapsulating and matrixforming material for sustained drug release. Mastic was characterized for its physicochemical properties. Microparticles were prepared by oil-in-oil solvent evaporation method. Matrix tablets were prepared by wet and melt granulation techniques. Diclofenac sodium(DFS) and diltiazem hydrochloride(DLTZ) were used as model drugs. Mastic produced discrete and spherical microspheres with DLTZ and microcapsules with DFS. Particle size and drug loading of microparticles was in the range of 22–62 μm and 50–87%, respectively. Increase in mastic:drug ratio increased microparticle size, improved drug loading and decreased the drug release rate. Microparticles with gum: drug ratio of 2:1 could sustain DLTZ release up to 12 h and released 57% DFS in 12 h. Mastic produced tablets with acceptable pharmacotechnical properties. A 30% w/w of mastic in tablet could sustain DLTZ release for 5 h from wet granulation,and DFS release for 8 h and 11 h from wet and melt granulation, respectively. Results revealed that a natural gum mastic can be used successfully to formulate matrix tablets and microparticles for sustained drug release.
文摘Coated microneedles(MNs) are widely used for delivering biopharmaceuticals. In this study, a novel gel encapsulated coated MNs(GEC-MNs) was developed. The water-soluble drug coating was encapsulated with sodium alginate(SA) in situ complexation gel. The manufacturing process of GEC-MNs was optimized for mass production. Compared to the water-soluble coated MNs(72.02% ± 11.49%), the drug delivery efficiency of the optimized GEC-MNs(88.42% ± 6.72%) was steadily increased, and this improvement was investigated through in vitro drug release. The sustained-release of BSA was observed in vitro permeation through the skin. The rhIFN α-1 b GEC-MNs was confirmed to achieve biosafety and 6-month storage stability. Pharmacokinetics of rhIFN α-1 b in GEC-MNs showed a linearly dosedependent relationship. The AUC of rhIFN α-1 b in GEC-MNs(4.51 ng/ml ·h) was bioequivalent to the intradermal(ID) injection(5.36 ng/ml ·h) and significantly higher than water-soluble coated MNs(3.12 ng/ml ·h). The rhIFN α-1 b elimination half-life of GEC-MNs, soluble coated MNs, and ID injection was 18.16, 1.44, and 2.53 h, respectively. The complexation-based GECMNs have proved to be more efficient, stable, and achieve the sustained-release of watersoluble drug in coating MNs, constituting a high value to biopharmaceutical.