Dicofol was listed by International POPs Elimination Network (IPEN) as requiring immediate and urgent considera-tion and thus was considered as a new candidate by Persistent Organic Pollutant Review Committee (POPRC) ...Dicofol was listed by International POPs Elimination Network (IPEN) as requiring immediate and urgent considera-tion and thus was considered as a new candidate by Persistent Organic Pollutant Review Committee (POPRC) as a possible persistent organic pollutant (POP). Dicofol is structurally similar to DDT. It is persistent in food and water, highly toxic to aquatic life and causes egg-shell thinning in some bird species. High concern, due to the lack of dicofol measurements in the Arctic, proving long range transport and bioaccumulation in wild life species, supports further impact assessment of this product. Under Stockholm Convention, substances identified as POPs are regulated with the objective to protect the environment and the human health. According to this objective, the search of environmental and healthy alternatives is helpful. This paper discusses the use of three groups of chemicals currently applied as alternatives to dicofol. An exhaustive review of the synthesis of dicofol, starting from DDT, and compared to possible substitutes is presented: 1) active principle with fluoralkenyl are proposed as an environmental and healthy alternative to dicofol, 2) inhibitor agents of mitochondrial electron transport as chlorfenapyr, hydramethylnon and pyridaben and 3) pesticides commonly applied in agricultural practices as oxythioquinox, fenbutatin-oxide and formetanate hydrochloride.展开更多
Dicofol type DDTs-contamination is of great concern as environmental organochlorine pollutant. In the present study, dechlorination time-course ofp,p'-DDT and p,p'-DDE in dithionite treated waterlogged DDTs-contamin...Dicofol type DDTs-contamination is of great concern as environmental organochlorine pollutant. In the present study, dechlorination time-course ofp,p'-DDT and p,p'-DDE in dithionite treated waterlogged DDTs-contaminated soil, non-contaminated soil solution and citrate-bicarbonate buffer (0, 50, 100 mmol L^-1, dithionite) for 72 hrs was investigated based on residual amount of p,p'-DDTs (p,p'-DDT and p,p'-DDE) analyzed by GC-ECD. The metabolites ofp,p'-DDTs in dithionite treated non-contaminated soil solution, and citrate-bicarbonate buffer were detected by GC-MSD. The dechlorination time-course of p,p'-DDT and p,p'-DDE exhibited rapid dechlorination at the first 3.0 hrs, slow dechlorination after 3.0 hrs. For 50 mmol L^-1 dithionite treatments, the dechlorination ratios ofp,p'-DDT and p,p'-DDE were 36.42% and 35.08% respectively at 3.0 hrs. For 100 mmol L^-1 dithionite treatments, the dechlorination ratios of p,p'-DDT and p,p'-DDE were 58.62% and 57.39% respectively at 3.0 hrs in DDTs-contaminated soils. Significant differences of dechlorination ratio were also confirmed in dependence on dithionite concentrations, reaction systems and the chemical structure of DDTs. The dechlorination ratio ofp,p'-DDT/DDE increased with the increasing of dithionite concentrations irrespective of reaction systems. Dithionite-induced dechlorination ratio of p,p'-DDT was higher than that of p,p'-DDE. The p,p'-DDD (1,1-dichloro-2,2-bis(4-chlorophenyl)-ethane), p,p'-DDE and p,p'-DDMU (1-chloro-2,2-bis(4-chloropheny)-ethylene) were identified to be metabolites ofp,p'-DDT in buffer and non-contaminated soil solution, however, no metabolites ofp,p'-DDE treated by dithionite were detected. The possible pathways explaining the dechlorination of p,p'-DDT and p,p'-DDE by dithionite were also proposed. Dithionite could be used to develop an effective and fast remediation option for DDTs-contaminated soils and sediments.展开更多
A new technique whereby cellulase immobilized on aminated silica was applied to catalyze the degradation of dicofol, an organochlorine pesticide. In order to evaluate the performance of free and immobilized cellulase,...A new technique whereby cellulase immobilized on aminated silica was applied to catalyze the degradation of dicofol, an organochlorine pesticide. In order to evaluate the performance of free and immobilized cellulase, experiments were carried out to measure the degradation efficiency. The Michaelis constant, Km, of the reaction catalyzed by immobilized cellulase was9.16 mg /L, and the maximum reaction rate, Vmax, was 0.40 mg /L /min, while that of free cellulase was Km= 8.18 mg /L, and Vmax= 0.79 mg /L /min, respectively. The kinetic constants of catalytic degradation were calculated to estimate substrate affinity. Considering that metal ions may affect enzyme activity, the effects of different metal ions on the catalytic degradation efficiency were explored. The results showed that the substrate affinity decreased after immobilization. Monovalent metal ions had no effect on the reaction, while divalent metal ions had either positive or inhibitory effects, including activation by Mn2+, reversible competition with Cd2+, and irreversible inhibition by Pb2+. Ca2+promoted the catalytic degradation of dicofol at low concentrations, but inhibited it at high concentrations. Compared with free cellulase, immobilized cellulase was affected less by metal ions. This work provided a basis for further studies on the co-occurrence of endocrine-disrupting chemicals and heavy metal ions in the environment.展开更多
It remains unclear whether dicofol should be defined as a persistent organic pollutant. Its environmental persistence has gained attention. This study focused on its degradation by cellulase. Cellulase was separated u...It remains unclear whether dicofol should be defined as a persistent organic pollutant. Its environmental persistence has gained attention. This study focused on its degradation by cellulase. Cellulase was separated using a gel chromatogram, and its degradation activity towards dicofol involved its endoglucanase activity. By analyzing the kinetic parameters of cellulase reacting with mixed substrates, it was shown that cellulase reacted on dicofol and carboxyl methyl cellulose through two different active centers. Thus, the degradation of dicofol was shown to be an oxidative process by cellulase. Next, by comparing the impacts of tert-butyl alcohol(a typical OH free-radical inhibitor) on the removal efficiencies of dicofol under both cellulase and Fenton reagent systems, it was shown that the removal of dicofol was initiated by OH free radicals produced by cellulase. Finally, 4,4′-dichlorodibenzophenone and chloride were detected using gas chromatography mass spectrometry and ion chromatography analysis, which supported our hypothesis. The reaction mechanism was analyzed and involved an attack by OH free radicals at the orthocarbon of dicofol, resulting in the degradation product 4,4′-dichloro-dibenzophenone.展开更多
Photocatalytic degradation of dicofol was investigated on TiO2 nano particles (TiO2-NPs) under UV light irradiation. It was shown that dicofol could be completely degraded into inorganic chloride ion under the conditi...Photocatalytic degradation of dicofol was investigated on TiO2 nano particles (TiO2-NPs) under UV light irradiation. It was shown that dicofol could be completely degraded into inorganic chloride ion under the condition of 0.25 mg/mL TiO2-NPs, 2 h irradiation of 400 W high pressure mercury lamp with a wavelength of 365 nm and air at a rate of 100 mL/min. The effects of the experimental conditions, in-cluding the amount of TiO2-NPs, irradiation time and the intensity of light, were studied. The apparent photodegradation rate constant was 0.167/min under the optimal condition. The photocatalytic degra-dation mechanism of dicofol was also discussed.展开更多
文摘Dicofol was listed by International POPs Elimination Network (IPEN) as requiring immediate and urgent considera-tion and thus was considered as a new candidate by Persistent Organic Pollutant Review Committee (POPRC) as a possible persistent organic pollutant (POP). Dicofol is structurally similar to DDT. It is persistent in food and water, highly toxic to aquatic life and causes egg-shell thinning in some bird species. High concern, due to the lack of dicofol measurements in the Arctic, proving long range transport and bioaccumulation in wild life species, supports further impact assessment of this product. Under Stockholm Convention, substances identified as POPs are regulated with the objective to protect the environment and the human health. According to this objective, the search of environmental and healthy alternatives is helpful. This paper discusses the use of three groups of chemicals currently applied as alternatives to dicofol. An exhaustive review of the synthesis of dicofol, starting from DDT, and compared to possible substitutes is presented: 1) active principle with fluoralkenyl are proposed as an environmental and healthy alternative to dicofol, 2) inhibitor agents of mitochondrial electron transport as chlorfenapyr, hydramethylnon and pyridaben and 3) pesticides commonly applied in agricultural practices as oxythioquinox, fenbutatin-oxide and formetanate hydrochloride.
基金Acknowledgments This research was jointly supported by National Science Foundation of China (No. 20777092), the ministry of Science and Technology of China (2007CB407304) and Natural science foundation of Zhejiang province of China (Y307025).
文摘Dicofol type DDTs-contamination is of great concern as environmental organochlorine pollutant. In the present study, dechlorination time-course ofp,p'-DDT and p,p'-DDE in dithionite treated waterlogged DDTs-contaminated soil, non-contaminated soil solution and citrate-bicarbonate buffer (0, 50, 100 mmol L^-1, dithionite) for 72 hrs was investigated based on residual amount of p,p'-DDTs (p,p'-DDT and p,p'-DDE) analyzed by GC-ECD. The metabolites ofp,p'-DDTs in dithionite treated non-contaminated soil solution, and citrate-bicarbonate buffer were detected by GC-MSD. The dechlorination time-course of p,p'-DDT and p,p'-DDE exhibited rapid dechlorination at the first 3.0 hrs, slow dechlorination after 3.0 hrs. For 50 mmol L^-1 dithionite treatments, the dechlorination ratios ofp,p'-DDT and p,p'-DDE were 36.42% and 35.08% respectively at 3.0 hrs. For 100 mmol L^-1 dithionite treatments, the dechlorination ratios of p,p'-DDT and p,p'-DDE were 58.62% and 57.39% respectively at 3.0 hrs in DDTs-contaminated soils. Significant differences of dechlorination ratio were also confirmed in dependence on dithionite concentrations, reaction systems and the chemical structure of DDTs. The dechlorination ratio ofp,p'-DDT/DDE increased with the increasing of dithionite concentrations irrespective of reaction systems. Dithionite-induced dechlorination ratio of p,p'-DDT was higher than that of p,p'-DDE. The p,p'-DDD (1,1-dichloro-2,2-bis(4-chlorophenyl)-ethane), p,p'-DDE and p,p'-DDMU (1-chloro-2,2-bis(4-chloropheny)-ethylene) were identified to be metabolites ofp,p'-DDT in buffer and non-contaminated soil solution, however, no metabolites ofp,p'-DDE treated by dithionite were detected. The possible pathways explaining the dechlorination of p,p'-DDT and p,p'-DDE by dithionite were also proposed. Dithionite could be used to develop an effective and fast remediation option for DDTs-contaminated soils and sediments.
基金the financial support by the special research funding for public benefit industries from National Ministry of Environmental Protection (No. 201209020)
文摘A new technique whereby cellulase immobilized on aminated silica was applied to catalyze the degradation of dicofol, an organochlorine pesticide. In order to evaluate the performance of free and immobilized cellulase, experiments were carried out to measure the degradation efficiency. The Michaelis constant, Km, of the reaction catalyzed by immobilized cellulase was9.16 mg /L, and the maximum reaction rate, Vmax, was 0.40 mg /L /min, while that of free cellulase was Km= 8.18 mg /L, and Vmax= 0.79 mg /L /min, respectively. The kinetic constants of catalytic degradation were calculated to estimate substrate affinity. Considering that metal ions may affect enzyme activity, the effects of different metal ions on the catalytic degradation efficiency were explored. The results showed that the substrate affinity decreased after immobilization. Monovalent metal ions had no effect on the reaction, while divalent metal ions had either positive or inhibitory effects, including activation by Mn2+, reversible competition with Cd2+, and irreversible inhibition by Pb2+. Ca2+promoted the catalytic degradation of dicofol at low concentrations, but inhibited it at high concentrations. Compared with free cellulase, immobilized cellulase was affected less by metal ions. This work provided a basis for further studies on the co-occurrence of endocrine-disrupting chemicals and heavy metal ions in the environment.
基金supported by the special fund provided by the State Key Joint Laboratory of Environmental Simulation and Pollution Control(Peking University,No.09Z02ESPCP)the Special Research Funding for Public Benefit Industries from National Ministry of Environmental Protection(No.201209020)
文摘It remains unclear whether dicofol should be defined as a persistent organic pollutant. Its environmental persistence has gained attention. This study focused on its degradation by cellulase. Cellulase was separated using a gel chromatogram, and its degradation activity towards dicofol involved its endoglucanase activity. By analyzing the kinetic parameters of cellulase reacting with mixed substrates, it was shown that cellulase reacted on dicofol and carboxyl methyl cellulose through two different active centers. Thus, the degradation of dicofol was shown to be an oxidative process by cellulase. Next, by comparing the impacts of tert-butyl alcohol(a typical OH free-radical inhibitor) on the removal efficiencies of dicofol under both cellulase and Fenton reagent systems, it was shown that the removal of dicofol was initiated by OH free radicals produced by cellulase. Finally, 4,4′-dichlorodibenzophenone and chloride were detected using gas chromatography mass spectrometry and ion chromatography analysis, which supported our hypothesis. The reaction mechanism was analyzed and involved an attack by OH free radicals at the orthocarbon of dicofol, resulting in the degradation product 4,4′-dichloro-dibenzophenone.
基金the Program for New Century Excellent Talents in University of China (NCET)the Science-Technology Project of Fujian Province (Grant Nos. 2005-I-030 and 2006Y0026)
文摘Photocatalytic degradation of dicofol was investigated on TiO2 nano particles (TiO2-NPs) under UV light irradiation. It was shown that dicofol could be completely degraded into inorganic chloride ion under the condition of 0.25 mg/mL TiO2-NPs, 2 h irradiation of 400 W high pressure mercury lamp with a wavelength of 365 nm and air at a rate of 100 mL/min. The effects of the experimental conditions, in-cluding the amount of TiO2-NPs, irradiation time and the intensity of light, were studied. The apparent photodegradation rate constant was 0.167/min under the optimal condition. The photocatalytic degra-dation mechanism of dicofol was also discussed.