In this work,a new mesoporous silicon sulfonic acid catalyst derived from silicic acid has been successfully prepared by the chemical bonding method.The physicochemical properties of mesoporous silicon sulfonic acid c...In this work,a new mesoporous silicon sulfonic acid catalyst derived from silicic acid has been successfully prepared by the chemical bonding method.The physicochemical properties of mesoporous silicon sulfonic acid catalysts have been systematically characterized using various techniques.The results demonstrate that sulfonic acid groups have been grafted on silicic acid by forming a new chemical bond(Si-O-S).The mesoporous silicon sulfonic acid exhibits excellent catalytic performance and stability in the vapor phase hydroamination reaction of cyclohexene with cyclohexylamine.Cyclohexene conversion of 61% and 97% selectivity to dicyclohexylamine was maintained after running the reaction for over 350 h at 280℃.The developed mesoporous silicon sulfonic acid catalyst shows advantages of low cost,superior acid site accessibility,and long term reactivity stability.Moreover,a possible catalytic hydroamination reaction mechanism over silicon sulfonic acid was suggested.It has been demonstrated that the sulfonic acid groups of the catalyst play an important role in the hydroamination.The present work provides a simple,efficient,and environmentally friendly method for the hydroamination of cyclohexene to valuable dicyclohexylamine,which also shows important industrial application prospects.展开更多
Peculiarities of a liquid phase hydrogenation, namely lower diffusivity of components influencing the reaction rate and deactivation of catalysts by leaching, are discussed. A focus is on hydrogenation of aromatic com...Peculiarities of a liquid phase hydrogenation, namely lower diffusivity of components influencing the reaction rate and deactivation of catalysts by leaching, are discussed. A focus is on hydrogenation of aromatic compounds, whereas the following processes are evaluated: (l) partial hydrogenation of benzene to cyclohexene; (2) hydrogenation of aniline; (3) hydrogenation of diphenylamine; (4) preparation of aniline from nitrobenzene; (5) hydrogenation of chloronitrobenzenes; (6) hydrogenation of 4-nitrosodiphenylamine and 4-nitrodiphenylamine mixture. Processes (1) and (6) are typically carried out in the water-oil system. Generally, this type of system allows reaching a higher selectivity to desired products. In the case of hydrogenation of 4-nitrosodiphenylamine and 4-nitrodiphenylamine mixture, the water phase extracts a water soluble catalyst; which is recycled and used for condensation of aniline and nitrobenzene. Problems of reaction kinetics, as well as catalysts deactivation are here discussed.展开更多
基金the financial support by the National Natural Science Foundation of China(Grant No.21676226)the Natural Science Foundation for Distinguished Young Scholars in Hunan Province(Grant No.2018JJ1023)+1 种基金Key Research and Development Program in Hunan Province(Grant No.2019GK2041)Collaborative Innovation Center of New Chemical Technologies for Environmental Benignity and Efficient Resource Utilization.
文摘In this work,a new mesoporous silicon sulfonic acid catalyst derived from silicic acid has been successfully prepared by the chemical bonding method.The physicochemical properties of mesoporous silicon sulfonic acid catalysts have been systematically characterized using various techniques.The results demonstrate that sulfonic acid groups have been grafted on silicic acid by forming a new chemical bond(Si-O-S).The mesoporous silicon sulfonic acid exhibits excellent catalytic performance and stability in the vapor phase hydroamination reaction of cyclohexene with cyclohexylamine.Cyclohexene conversion of 61% and 97% selectivity to dicyclohexylamine was maintained after running the reaction for over 350 h at 280℃.The developed mesoporous silicon sulfonic acid catalyst shows advantages of low cost,superior acid site accessibility,and long term reactivity stability.Moreover,a possible catalytic hydroamination reaction mechanism over silicon sulfonic acid was suggested.It has been demonstrated that the sulfonic acid groups of the catalyst play an important role in the hydroamination.The present work provides a simple,efficient,and environmentally friendly method for the hydroamination of cyclohexene to valuable dicyclohexylamine,which also shows important industrial application prospects.
文摘Peculiarities of a liquid phase hydrogenation, namely lower diffusivity of components influencing the reaction rate and deactivation of catalysts by leaching, are discussed. A focus is on hydrogenation of aromatic compounds, whereas the following processes are evaluated: (l) partial hydrogenation of benzene to cyclohexene; (2) hydrogenation of aniline; (3) hydrogenation of diphenylamine; (4) preparation of aniline from nitrobenzene; (5) hydrogenation of chloronitrobenzenes; (6) hydrogenation of 4-nitrosodiphenylamine and 4-nitrodiphenylamine mixture. Processes (1) and (6) are typically carried out in the water-oil system. Generally, this type of system allows reaching a higher selectivity to desired products. In the case of hydrogenation of 4-nitrosodiphenylamine and 4-nitrodiphenylamine mixture, the water phase extracts a water soluble catalyst; which is recycled and used for condensation of aniline and nitrobenzene. Problems of reaction kinetics, as well as catalysts deactivation are here discussed.