Many disadvantages exist in the traditional die design method which belongs to serial pattern. It is well known that heat treatment is highly important to the dies. A new idea of concurrent design for heat treatment p...Many disadvantages exist in the traditional die design method which belongs to serial pattern. It is well known that heat treatment is highly important to the dies. A new idea of concurrent design for heat treatment process of die and mould was developed in order to overcome the existent shortcomings of heat treatment process. Heat treatment CAD/CAE was integrated with concurrent circumstance and the relevant model was built. These investigations can remarkably improve efficiency, reduce cost and ensure quality of R and D for products.展开更多
This paper reports an effort to develop an intelligent integration framework for digital progressive die design and manufacturing. Both data-and process-centric integration functions are provided by the framework as i...This paper reports an effort to develop an intelligent integration framework for digital progressive die design and manufacturing. Both data-and process-centric integration functions are provided by the framework as if a special ight-weight PDM/PLM (Product Data Management/Product Lifecycle Management) and WM (Workflow Management) system is embedded in the integrated engineering environment. A flexible integration approach based on the CAD (Computer-Aided Design) framework tenet is employed to rapidly build up the system while the intrinsic characteristics of the process are comprehensively taken into account. Introduction of this integration framework would greatly improve the dynamic performance of the overall progressive die design and manufacturing process.展开更多
In order to solve the mould filling problem of large thin walled aluminum alloy castings effectively, a new casting technology called electromagnetic die casting has been developed. Emphasis has laid on studying the m...In order to solve the mould filling problem of large thin walled aluminum alloy castings effectively, a new casting technology called electromagnetic die casting has been developed. Emphasis has laid on studying the mould filling ability and microstructure under the mentioned method. The results show that the mould filling ability of A357 is increasing continually with the increasing of the input voltage, that is, the magnetic induction intensity. The pressure head of the molten metal increases from the lowest one at the input of the mould to the highest one at the end of the mould while in a conventional mould the pressure head depends invariably on the sprue height. Under electromagnetic die casting, the grains of A357 alloy are refined, and the pattern of eutectic silicon of alloy changes from rough plate to smooth strip.展开更多
The paper discussed cutter-work engagement situation hidden behind the mechanical and thermal load effect on cutting edges during high speed hard machining process. The engagement situation was investigated in great d...The paper discussed cutter-work engagement situation hidden behind the mechanical and thermal load effect on cutting edges during high speed hard machining process. The engagement situation was investigated in great detail using experimental and geometrical analytic measures. Experiments were conducted using A1TiN-coated micro-grain carbide end mill cutters to cut hardened die steel. On the basis, a general high speed hard machining strategy, which aimed at eliminating excessive engagement situation during high-speed machining (HSM) hard machining, was proposed. The strategy includes the procedures to identify prone-to-overload areas where excessive engagement situation occurs and then to create a reliable tool path, which has the effect of cutting load reduction to remove the prone-to-overload areas.展开更多
Hydraulic simulation is one of the critical methods to research the filling mechanism of molten metal in the casting process.However,it only performs on test pieces with relatively simple structures due to the limitat...Hydraulic simulation is one of the critical methods to research the filling mechanism of molten metal in the casting process.However,it only performs on test pieces with relatively simple structures due to the limitation of the preparation method.In this study,the method of photocuring additive manufacturing was used to prepare the complex casting mould from transparent photosensitive resin.The pouring test was carried out under different centrifugal conditions,and the filling process of the gating system,support bars and other positions in the vertical direction was recorded and analyzed.The experimental results show that the internal liquid level and the filling process of the test piece prepared by this method can be observed clearly.The angle between the liquid surface and the horizontal plane in the test piece gradually increases as the centrifugal rotational speed increases,which means the filling process is carried out from outside to inside at high rotational speed.The velocity of the fluid entering the runner increases with the increase of rotational speed,but the filling speeds is less affected by the centrifugal speed at other positions.The liquid flow is continuous and stable during the forward filling process,without splashing or interruption of liquid droplets.展开更多
This paper focuses on agile manufacturing of complex moulds for punch devices and a decision analysis for the key link of agile manufacturing resources integration—the virtual company in a multivariate criterion univ...This paper focuses on agile manufacturing of complex moulds for punch devices and a decision analysis for the key link of agile manufacturing resources integration—the virtual company in a multivariate criterion universe of discourse. On the basis of presenting an agile manufacturing model of complex moulds for punch devices, we give a fuzzy decision method of two level judgment space of synthetic decision and several key problems which the production of complex moulds for punch devices must face under the architecture hierarchy of agile manufacturing. We give a fuzzy decision method of two level judgment space of synthetic decision and several key problems which the production of complex parts must face under the architecture hierarchy of agile manufacturing.展开更多
The integrated circuit (IC) manufacturing process is capital intensive and complex. The production process of unit product (or die, as it is commonly referred to) takes several weeks. Semiconductor factories (fabs) co...The integrated circuit (IC) manufacturing process is capital intensive and complex. The production process of unit product (or die, as it is commonly referred to) takes several weeks. Semiconductor factories (fabs) continuously attempt to improve their productivity, as measured in output and cycle time (or mean flow time). The conflicting objective of producing maximum units at minimal production cycle time and at the highest quality, as measured by die yield, is discussed in this paper. The inter-related effects are characterized, and a model is proposed to address this multi-objective function. We then show that, with this model, die cost can be optimized for any given operating conditions of a fab. A numerical example is provided to illustrate the practicality of the model and the proposed optimization method.展开更多
Flip chip die-to-wafer bonding faces challenges for industry adoption due to a variety of technical gaps or process integration factors that are not fully developed to high volume manufacturing(HVM)maturity.In this pa...Flip chip die-to-wafer bonding faces challenges for industry adoption due to a variety of technical gaps or process integration factors that are not fully developed to high volume manufacturing(HVM)maturity.In this paper,flip-chip and wire bonding are compared,then flip-chip bonding techniques are compared to examine advantages for scaling and speed.Specific recent 3-year trends in flip-chip die-to-wafer bonding are reviewed to address the key gaps and challenges to HVM adoption.Finally,some thoughts on the care needed by the packaging technology for successful HVM introduction are reviewed.展开更多
基金ItemSponsored by National Natural Science Foundation of China (50075053) Science and Technology Foundation ofShanghai Higher Education (03 HZ01)
文摘Many disadvantages exist in the traditional die design method which belongs to serial pattern. It is well known that heat treatment is highly important to the dies. A new idea of concurrent design for heat treatment process of die and mould was developed in order to overcome the existent shortcomings of heat treatment process. Heat treatment CAD/CAE was integrated with concurrent circumstance and the relevant model was built. These investigations can remarkably improve efficiency, reduce cost and ensure quality of R and D for products.
文摘This paper reports an effort to develop an intelligent integration framework for digital progressive die design and manufacturing. Both data-and process-centric integration functions are provided by the framework as if a special ight-weight PDM/PLM (Product Data Management/Product Lifecycle Management) and WM (Workflow Management) system is embedded in the integrated engineering environment. A flexible integration approach based on the CAD (Computer-Aided Design) framework tenet is employed to rapidly build up the system while the intrinsic characteristics of the process are comprehensively taken into account. Introduction of this integration framework would greatly improve the dynamic performance of the overall progressive die design and manufacturing process.
文摘In order to solve the mould filling problem of large thin walled aluminum alloy castings effectively, a new casting technology called electromagnetic die casting has been developed. Emphasis has laid on studying the mould filling ability and microstructure under the mentioned method. The results show that the mould filling ability of A357 is increasing continually with the increasing of the input voltage, that is, the magnetic induction intensity. The pressure head of the molten metal increases from the lowest one at the input of the mould to the highest one at the end of the mould while in a conventional mould the pressure head depends invariably on the sprue height. Under electromagnetic die casting, the grains of A357 alloy are refined, and the pattern of eutectic silicon of alloy changes from rough plate to smooth strip.
文摘The paper discussed cutter-work engagement situation hidden behind the mechanical and thermal load effect on cutting edges during high speed hard machining process. The engagement situation was investigated in great detail using experimental and geometrical analytic measures. Experiments were conducted using A1TiN-coated micro-grain carbide end mill cutters to cut hardened die steel. On the basis, a general high speed hard machining strategy, which aimed at eliminating excessive engagement situation during high-speed machining (HSM) hard machining, was proposed. The strategy includes the procedures to identify prone-to-overload areas where excessive engagement situation occurs and then to create a reliable tool path, which has the effect of cutting load reduction to remove the prone-to-overload areas.
基金This work was financially supported by the National Science and Technology Major Project of China(Grant No.J2019-Ⅶ-0002-0142)the National Natural Science Foundation of China(Grant No.52175333).
文摘Hydraulic simulation is one of the critical methods to research the filling mechanism of molten metal in the casting process.However,it only performs on test pieces with relatively simple structures due to the limitation of the preparation method.In this study,the method of photocuring additive manufacturing was used to prepare the complex casting mould from transparent photosensitive resin.The pouring test was carried out under different centrifugal conditions,and the filling process of the gating system,support bars and other positions in the vertical direction was recorded and analyzed.The experimental results show that the internal liquid level and the filling process of the test piece prepared by this method can be observed clearly.The angle between the liquid surface and the horizontal plane in the test piece gradually increases as the centrifugal rotational speed increases,which means the filling process is carried out from outside to inside at high rotational speed.The velocity of the fluid entering the runner increases with the increase of rotational speed,but the filling speeds is less affected by the centrifugal speed at other positions.The liquid flow is continuous and stable during the forward filling process,without splashing or interruption of liquid droplets.
文摘This paper focuses on agile manufacturing of complex moulds for punch devices and a decision analysis for the key link of agile manufacturing resources integration—the virtual company in a multivariate criterion universe of discourse. On the basis of presenting an agile manufacturing model of complex moulds for punch devices, we give a fuzzy decision method of two level judgment space of synthetic decision and several key problems which the production of complex moulds for punch devices must face under the architecture hierarchy of agile manufacturing. We give a fuzzy decision method of two level judgment space of synthetic decision and several key problems which the production of complex parts must face under the architecture hierarchy of agile manufacturing.
文摘The integrated circuit (IC) manufacturing process is capital intensive and complex. The production process of unit product (or die, as it is commonly referred to) takes several weeks. Semiconductor factories (fabs) continuously attempt to improve their productivity, as measured in output and cycle time (or mean flow time). The conflicting objective of producing maximum units at minimal production cycle time and at the highest quality, as measured by die yield, is discussed in this paper. The inter-related effects are characterized, and a model is proposed to address this multi-objective function. We then show that, with this model, die cost can be optimized for any given operating conditions of a fab. A numerical example is provided to illustrate the practicality of the model and the proposed optimization method.
文摘Flip chip die-to-wafer bonding faces challenges for industry adoption due to a variety of technical gaps or process integration factors that are not fully developed to high volume manufacturing(HVM)maturity.In this paper,flip-chip and wire bonding are compared,then flip-chip bonding techniques are compared to examine advantages for scaling and speed.Specific recent 3-year trends in flip-chip die-to-wafer bonding are reviewed to address the key gaps and challenges to HVM adoption.Finally,some thoughts on the care needed by the packaging technology for successful HVM introduction are reviewed.