High energy consumption is a serious issue associated with in situ thermal desorption(TD)remediation of sites contaminated by petroleum hydrocarbons(PHs).The knowledge on the thermophysical properties of contaminated ...High energy consumption is a serious issue associated with in situ thermal desorption(TD)remediation of sites contaminated by petroleum hydrocarbons(PHs).The knowledge on the thermophysical properties of contaminated soil can help predict accurately the transient temperature distribution in a remediation site,for the purpose of energy conservation.However,such data are rarely reported for PH-contaminated soil.In this study,by taking diesel as a representative example for PHs,soil samples with constant dry bulk density but different diesel mass concentrations ranging from 0% to 20% were prepared,and the variations of their thermal conductivity,specific heat capacity and thermal diffusivity were measured and analyzed over a wide temperature range between 0℃ and 120℃.It was found that the effect of diesel concentration on the thermal conductivity of soil is negligible when it is below 1%.When diesel concentration is below 10%,the thermal conductivity of soil increases with raising the temperature.However,when diesel concentration becomes above 10%,the change of the thermal conductivity of soil with temperature exhibits the opposite trend.This is mainly due to the competition between soil minerals and diesel,because the thermal conductivity of minerals increases with temperature,whereas the thermal conductivity of diesel decreases with temperature.The analysis results showed that,compared with temperature,the diesel concentration has more significant effects on soil thermal conductivity.Regardless of the diesel concentration,with the increase of temperature,the specific heat capacity of soil increases,while the thermal diffusivity of soil decreases.In addition,the results of a control experiment exhibited that the relative differences of the thermal conductivity of the soil samples containing the same concentration of both diesel and a pure alkane are all below 10%,indicating that the results obtained with diesel in this study can be extended to the family of PHs.A theoretical prediction model was proposed based on cubic fractal and thermal resistance analysis,which confirmed that diesel concentration does have a significant effect on soil thermal conductivity.For the sake of practical applications,a regression model with the diesel concentration as a primary parameter was also proposed.展开更多
Emission characterization of particle number as well as particle mass from three diesel passenger cars equipped with diesel particulate filter(DPF), diesel oxidation catalyst(DOC)and exhaust gas recirculation(EGR...Emission characterization of particle number as well as particle mass from three diesel passenger cars equipped with diesel particulate filter(DPF), diesel oxidation catalyst(DOC)and exhaust gas recirculation(EGR) under the vehicle driving cycles and regulatory cycle.Total particle number emissions(PNEs) decreased gradually during speed-up of vehicle from 17.3 to 97.3 km/hr. As the average vehicle speed increases, the size-segregated peak of particle number concentration shifts to smaller size ranges of particles. The correlation analysis with various particulate components such as particle number concentration(PNC),ultrafine particle number concentration(UFPNC) and particulate matter(PM) mass was conducted to compare gaseous compounds(CO, CO2, HC and NOx). The UFPNC and PM were not only emitted highly in Seoul during severe traffic jam conditions, but also have good correlation with hydrocarbons and NOxinfluencing high potential on secondary aerosol generation. The effect of the dilution temperature on total PNC under the New European Driving Cycle(NEDC), was slightly higher than the dilution ratio. In addition, the nuclei mode(DP: ≤ 13 nm) was confirmed to be more sensitive to the dilution temperature rather than other particle size ranges. Comparison with particle composition between vehicle speed cycles and regulatory cycle showed that sulfate was slightly increased at regulatory cycle, while other components were relatively similar. During cold start test, semivolatile nucleation particles were increased due to effect of cold environment. Research on particle formation dependent on dilution conditions of diesel passenger cars under the NEDC is important to verify impact on vehicular traffic and secondary aerosol formation in Seoul.展开更多
基金financially supported by the National Key Research and Development Program (project No.2019YFC1805700,program No.2019YFC1805701)。
文摘High energy consumption is a serious issue associated with in situ thermal desorption(TD)remediation of sites contaminated by petroleum hydrocarbons(PHs).The knowledge on the thermophysical properties of contaminated soil can help predict accurately the transient temperature distribution in a remediation site,for the purpose of energy conservation.However,such data are rarely reported for PH-contaminated soil.In this study,by taking diesel as a representative example for PHs,soil samples with constant dry bulk density but different diesel mass concentrations ranging from 0% to 20% were prepared,and the variations of their thermal conductivity,specific heat capacity and thermal diffusivity were measured and analyzed over a wide temperature range between 0℃ and 120℃.It was found that the effect of diesel concentration on the thermal conductivity of soil is negligible when it is below 1%.When diesel concentration is below 10%,the thermal conductivity of soil increases with raising the temperature.However,when diesel concentration becomes above 10%,the change of the thermal conductivity of soil with temperature exhibits the opposite trend.This is mainly due to the competition between soil minerals and diesel,because the thermal conductivity of minerals increases with temperature,whereas the thermal conductivity of diesel decreases with temperature.The analysis results showed that,compared with temperature,the diesel concentration has more significant effects on soil thermal conductivity.Regardless of the diesel concentration,with the increase of temperature,the specific heat capacity of soil increases,while the thermal diffusivity of soil decreases.In addition,the results of a control experiment exhibited that the relative differences of the thermal conductivity of the soil samples containing the same concentration of both diesel and a pure alkane are all below 10%,indicating that the results obtained with diesel in this study can be extended to the family of PHs.A theoretical prediction model was proposed based on cubic fractal and thermal resistance analysis,which confirmed that diesel concentration does have a significant effect on soil thermal conductivity.For the sake of practical applications,a regression model with the diesel concentration as a primary parameter was also proposed.
基金supported by Transportation Pollution Research Center,National Institute of Environmental Research in Republic of Korea
文摘Emission characterization of particle number as well as particle mass from three diesel passenger cars equipped with diesel particulate filter(DPF), diesel oxidation catalyst(DOC)and exhaust gas recirculation(EGR) under the vehicle driving cycles and regulatory cycle.Total particle number emissions(PNEs) decreased gradually during speed-up of vehicle from 17.3 to 97.3 km/hr. As the average vehicle speed increases, the size-segregated peak of particle number concentration shifts to smaller size ranges of particles. The correlation analysis with various particulate components such as particle number concentration(PNC),ultrafine particle number concentration(UFPNC) and particulate matter(PM) mass was conducted to compare gaseous compounds(CO, CO2, HC and NOx). The UFPNC and PM were not only emitted highly in Seoul during severe traffic jam conditions, but also have good correlation with hydrocarbons and NOxinfluencing high potential on secondary aerosol generation. The effect of the dilution temperature on total PNC under the New European Driving Cycle(NEDC), was slightly higher than the dilution ratio. In addition, the nuclei mode(DP: ≤ 13 nm) was confirmed to be more sensitive to the dilution temperature rather than other particle size ranges. Comparison with particle composition between vehicle speed cycles and regulatory cycle showed that sulfate was slightly increased at regulatory cycle, while other components were relatively similar. During cold start test, semivolatile nucleation particles were increased due to effect of cold environment. Research on particle formation dependent on dilution conditions of diesel passenger cars under the NEDC is important to verify impact on vehicular traffic and secondary aerosol formation in Seoul.