Cu–Mn bimetal catalysts were prepared to remove nitrogen oxides(NOx)from diesel engine exhaust at low temperatures.At a Cu/Mn ratio of 3:2,the NOx conversions at 200°C reached 65%and 90%on Cu–Mn/ZSM‐5 and Cu–...Cu–Mn bimetal catalysts were prepared to remove nitrogen oxides(NOx)from diesel engine exhaust at low temperatures.At a Cu/Mn ratio of 3:2,the NOx conversions at 200°C reached 65%and 90%on Cu–Mn/ZSM‐5 and Cu–Mn/SAPO‐34,respectively.After a hydrothermal treatment and reaction in the presence of C3H6,the activity of Cu–Mn/SAPO‐34 was more stable than that of Cu–Mn/ZSM‐5.No obvious variations in the crystal structure or dealumination were observed,whereas the physical structure was best maintained in Cu–Mn/SAPO‐34.The atomic concentration of Cu on the surface of Cu–Mn/SAPO‐34 was quite stable,and the consumption of octahedrally coordinated Cu2+could be recovered.Conversely,the proportion of octahedrally coordinated Cu2+on the surface of Cu–Mn/ZSM‐5 significantly decreased.Therefore,besides the structure,the redox cycle between Cu+and octahedrally coordinated Cu2+played an important role in the stability of the catalysts.展开更多
Reported in this paper is a feasibility study on the injection of plasma induced N radicals for the abatement of NO and NOx present in the actual diesel exhaust. The radical laden diesel exhaust was further treated by...Reported in this paper is a feasibility study on the injection of plasma induced N radicals for the abatement of NO and NOx present in the actual diesel exhaust. The radical laden diesel exhaust was further treated by discharge plasma in a dielectric barrier discharge reactor. N radicals were produced in a separate plasma reactor filled with BaTiO3 pellets and were then injected into the treatment zone, There was a significant improvement in the efficiency when the radicals were injected compared to that when there was no radical injection. The efficiency of NOx removal at 0 load with plasma alone was 14% whereas with the injection of N radicals it went up to 38%, The results of the experiments conducted at different loads are discussed,展开更多
This paper reports the studies conducted on removal of oxides ofnitrogen (NOx) from diesel engine exhaust using electrical dischargeplasma combined with adsorbing materials such as molecular sieves.This study is being...This paper reports the studies conducted on removal of oxides ofnitrogen (NOx) from diesel engine exhaust using electrical dischargeplasma combined with adsorbing materials such as molecular sieves.This study is being reported for the first time. The exhaust is takenfrom a diesel engine of 6 kW under no load conditions. Thecharacteristic behavior of a pulse energized dielectric barrierdischarge reactor in the diesel exhaust treatment is reported. TheNOx removal was not significant (36/100) when the reactor without anypacking was used.展开更多
A cascaded system of electrical discharges (Non-thermal plasma), catalyst andadsorption process was investigated for the removal of oxides of nitrogen (NO_x) and carbonmonoxide (CO) from a Diesel engine raw exhaust. T...A cascaded system of electrical discharges (Non-thermal plasma), catalyst andadsorption process was investigated for the removal of oxides of nitrogen (NO_x) and carbonmonoxide (CO) from a Diesel engine raw exhaust. The three processes were separately studied first,and then the cascaded processes, namely plasma-catalyst and plasma-adsorbent, were investigated. Inthis paper main emphasis was laid on the effect of carbonaceous soot oxidation on the plasmatreatment process. While the cascaded plasma-catalyst process exhibits a higher CO removal, thecascaded plasma-adsorbent process exhibits a higher NO_x removal. The experiments were conductedunder no-load. The plasma and adsorbent reactors were kept at room temperature throughout theexperiment while the catalyst reactor was kept at 200℃ / 300℃.展开更多
Improved performance of plasma in raw engine exhaust treatment is reported. A new type of reactor referred to as of cross-flow dielectric barrier discharge (DBD) was used, in which the gas flow is perpendicular to t...Improved performance of plasma in raw engine exhaust treatment is reported. A new type of reactor referred to as of cross-flow dielectric barrier discharge (DBD) was used, in which the gas flow is perpendicular to the corona electrode. In raw exhaust environment, the cross-flow (radial-flow) reactor exhibits a superior performance with regard to NOx removal when compared to that with axial flow of gas. Experiments were conducted at different flow rates ranging from 2 L/min to 25 L/min. The plasma assisted barrier discharge reactor has shown encouraging results in NOx removal at high flow rates.展开更多
Diesel engine exhaust(DEE) and crystalline silica exposures occur simultaneously in the mining industry,and occupational sampling campaigns can be time-and cost-consuming. The authors evaluated a dualport system for s...Diesel engine exhaust(DEE) and crystalline silica exposures occur simultaneously in the mining industry,and occupational sampling campaigns can be time-and cost-consuming. The authors evaluated a dualport system for simultaneous sampling of DEE and crystalline silica in laboratory and field conditions.Laboratory tests evaluated the operation of pumps during 8 h sampling and the intensity of the flow variation for various filter loading conditions and for different modes of operation. Field validation was performed in an underground mine. Pumps operated in constant flow or constant pressure modes.Tests in constant flow mode showed that when the flowrate increased on one side of the system, it decreased on the opposite side according to the loading intensity. Tests in constant pressure mode showed that flowrates systematically decreased when using loaded cassettes. However, the higher the backpressure setting, the lower the flow variation was. Flow variations during field tests were generally within the acceptable ±5% range. However, significant flow variations were identified in higher concentrations. A significant negative correlation was found between flowrate variation and total carbon concentration. While the majority of tests support the use of the dual-port for evaluating concomitant exposures, results highlight the possibility of filter overloading as a cause of flowrate changes.展开更多
<strong>Objective:</strong> To assess the association between circulating C-reactive protein (CRP), and CRP polymorphisms in the diesel engine exhaust (DEE)-exposed workers. <strong>Methods:</stro...<strong>Objective:</strong> To assess the association between circulating C-reactive protein (CRP), and CRP polymorphisms in the diesel engine exhaust (DEE)-exposed workers. <strong>Methods:</strong> In 137 DEE-exposed workers and 127 unexposed comparable control workers, six urinary mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and serum CRP levels were assayed. Genotyping of four CRP single-nucleotide polymorphisms (SNPs) was measured. <strong>Results: </strong>Serum CRP levels increased in exposed versus control workers (all p < 0.001). In the DEE-exposed workers, two CRP polymorphisms were associated with serum CRP levels, the subjects of rs1205 TT genotype had lower serum CRP levels (p < 0.05 compared to TC or CC). <strong>Conclusions: </strong>Our findings suggest that polymorphisms in CRP and circulating CRP involved in the inflammatory process may play significant roles in human sensitivity to lung function injury caused by DEE exposure. This study will help investigate the underlying mechanisms of adverse respiratory effects induced by DEE.展开更多
This paper reports improved performance of discharge plasma in raw engine exhaust treatment. For the purpose of investigation, both filtered and raw diesel engine exhaust were separately treated by the discharge plasm...This paper reports improved performance of discharge plasma in raw engine exhaust treatment. For the purpose of investigation, both filtered and raw diesel engine exhaust were separately treated by the discharge plasma. In raw exhaust environment, the discharge plasma exhibits a superior performance with regard to NOx removal, energy consmnption and formation of by-products. In this study, experiments were conducted at conditions of different temperatures and loads.展开更多
A facile procedure was carried out to prepare macroporous perovskite-type complex oxide catalysts of La1–xKxCo1–yFeyO3(x=0,0.1,y=0,0.1) by using the combined method of organic ligation and solution combustion.This m...A facile procedure was carried out to prepare macroporous perovskite-type complex oxide catalysts of La1–xKxCo1–yFeyO3(x=0,0.1,y=0,0.1) by using the combined method of organic ligation and solution combustion.This method could ensure the formation of the desired macroporous structures and the desired crystal phases of the prepared catalysts.It was found that the macroporous catalysts showed higher catalytic activities for soot combustion than that of the corresponding nanometric samples,and the macroporous ...展开更多
A novel four-way combining catalysts containing double layers was applied to simultaneously remove four kinds of exhaust pollutants (NOx, CO, HC and PM) emitted from diesel engine. The four-way catalysts were charac...A novel four-way combining catalysts containing double layers was applied to simultaneously remove four kinds of exhaust pollutants (NOx, CO, HC and PM) emitted from diesel engine. The four-way catalysts were characterized using scanning electron microscope (SEM) and Ultraviolet visible diffuse reflectance spectroscopy (UV-Vis DRS). Their catalytic performances were evaluated by temperature-programmed reaction technology. The double layer catalysts could effectively remove the four main pollutants. The highest catalytic activity was given by the two-layered catalysts of La0.6 K0.4CoO3/Al2O3 and W/HZSM-5. Under the simulated exhaust gases conditions, the peak temperature of the soot combustion was 421℃, the maximal conversion of NO to N2 was 74%, the temperature of the HC total conversion was 357℃, and the maximum conversion ratio of CO was 99%.展开更多
A series of phosphorylation and blank CeSn_(0.8)W_(0.6)O_x/TiAl_(0.2)Si_(0.1)O_y catalysts prepared by extrusion molding were tested for NH_3-SCR of NO, and were characterized by techniques of X-ray diffractio...A series of phosphorylation and blank CeSn_(0.8)W_(0.6)O_x/TiAl_(0.2)Si_(0.1)O_y catalysts prepared by extrusion molding were tested for NH_3-SCR of NO, and were characterized by techniques of X-ray diffraction(XRD), Brumauer-Emmett-Teller(N_2-BET), environmental scanning electron microscope(ESEM), temperature programmed reduction(H_2-TPR) and temperature programmed desorption(NH_3-TPD). Effects of phosphorylation on catalytic activity and sulfur-resisting performance of the CeSn_(0.8)W_(0.6)O_x/TiAl_(0.2)Si_(0.1)O_y for NH_3-SCR of NO were mainly studied. Results showed that the phosphorylation improved the catalytic activity and sulfur-resisting performance in an active temperature window of 300–440 °C, and the phosphorylation catalyst with 0.4 wt.% H_3PO_4 exhibited the best catalytic performance and the strongest sulfur-resisting performance. Analysis showed that the phosphorylation increased specific surface area, enhanced the surface acidity and improved redox properties.展开更多
The presented work reports the selective catalytic reduction(SCR)of NO_(x) assisted by dielectric barrier discharge plasma via simulating marine diesel engine exhaust,and the experimental results demonstrate that the ...The presented work reports the selective catalytic reduction(SCR)of NO_(x) assisted by dielectric barrier discharge plasma via simulating marine diesel engine exhaust,and the experimental results demonstrate that the low-temperature activity of NH_(3)-SCR assisted by non-thermal plasma is enhanced significantly,particularly in the presence of a C_(3)H_(6) additive.Simultaneously,CeMnZrO_(x)@TiO_(2) exhibits strong tolerance to SO_(2) poisoning and superior catalytic stability.It is worthwhile to explore a new approach to remove NO_(x) from marine diesel engine exhaust,which is of vital significance for both academic research and practical applications.展开更多
A turbocharged diesel engine model was built with the GT-Power software,and experimentally verified.Then two different control variables for the control of the variable geometry turbocharger(VGT)were described,and t...A turbocharged diesel engine model was built with the GT-Power software,and experimentally verified.Then two different control variables for the control of the variable geometry turbocharger(VGT)were described,and their distinct effects on engine performance,i.e.NOxand soot emissions and fuel consumption,were simulated and compared on the basis of this model.The results showed that NOxemissions decreased obviously with the increase of exhaust gas recirculation(EGR)rate at constant boost pressure condition,but soot emissions and fuel consumption considerably increased.It was a good way to reduce NOxemissions without increasing fuel consumption and soot emissions when VGT was controlled to maintain the excess oxygen ratio unchanged as EGR rate increases.展开更多
Diesel vehicles are responsible for most of the traffic-related nitrogen oxide(NO x) emissions,including nitric oxide(NO) and nitrogen dioxide(NO2). The use of after-treatment devices increases the risk of high ...Diesel vehicles are responsible for most of the traffic-related nitrogen oxide(NO x) emissions,including nitric oxide(NO) and nitrogen dioxide(NO2). The use of after-treatment devices increases the risk of high NO2/NO x emissions from diesel engines. In order to investigate the factors influencing NO2/NO x emissions, an emission experiment was carried out on a high pressure common-rail, turbocharged diesel engine with a catalytic diesel particulate filter(CDPF). NO2 was measured by a non-dispersive ultraviolet analyzer with raw exhaust sampling. The experimental results show that the NO2/NO x ratios downstream of the CDPF range around 20%–83%, which are significantly higher than those upstream of the CDPF. The exhaust temperature is a decisive factor influencing the NO2/NO x emissions. The maximum NO2/NO x emission appears at the exhaust temperature of 350°C. The space velocity,engine-out PM/NO x ratio(mass based) and CO conversion ratio are secondary factors. At a constant exhaust temperature, the NO2/NO x emissions decreased with increasing space velocity and engine-out PM/NO x ratio. When the CO conversion ratios range from 80% to 90%,the NO2/NO x emissions remain at a high level.展开更多
基金supported by the National Natural Science Foundation of China(51008277)the Natural Science Foundation of Zhejiang Province(LY14E080001)the Key Project of Zhejiang Provincial Science and Technology Program(2012C03003-4)~~
文摘Cu–Mn bimetal catalysts were prepared to remove nitrogen oxides(NOx)from diesel engine exhaust at low temperatures.At a Cu/Mn ratio of 3:2,the NOx conversions at 200°C reached 65%and 90%on Cu–Mn/ZSM‐5 and Cu–Mn/SAPO‐34,respectively.After a hydrothermal treatment and reaction in the presence of C3H6,the activity of Cu–Mn/SAPO‐34 was more stable than that of Cu–Mn/ZSM‐5.No obvious variations in the crystal structure or dealumination were observed,whereas the physical structure was best maintained in Cu–Mn/SAPO‐34.The atomic concentration of Cu on the surface of Cu–Mn/SAPO‐34 was quite stable,and the consumption of octahedrally coordinated Cu2+could be recovered.Conversely,the proportion of octahedrally coordinated Cu2+on the surface of Cu–Mn/ZSM‐5 significantly decreased.Therefore,besides the structure,the redox cycle between Cu+and octahedrally coordinated Cu2+played an important role in the stability of the catalysts.
文摘Reported in this paper is a feasibility study on the injection of plasma induced N radicals for the abatement of NO and NOx present in the actual diesel exhaust. The radical laden diesel exhaust was further treated by discharge plasma in a dielectric barrier discharge reactor. N radicals were produced in a separate plasma reactor filled with BaTiO3 pellets and were then injected into the treatment zone, There was a significant improvement in the efficiency when the radicals were injected compared to that when there was no radical injection. The efficiency of NOx removal at 0 load with plasma alone was 14% whereas with the injection of N radicals it went up to 38%, The results of the experiments conducted at different loads are discussed,
文摘This paper reports the studies conducted on removal of oxides ofnitrogen (NOx) from diesel engine exhaust using electrical dischargeplasma combined with adsorbing materials such as molecular sieves.This study is being reported for the first time. The exhaust is takenfrom a diesel engine of 6 kW under no load conditions. Thecharacteristic behavior of a pulse energized dielectric barrierdischarge reactor in the diesel exhaust treatment is reported. TheNOx removal was not significant (36/100) when the reactor without anypacking was used.
文摘A cascaded system of electrical discharges (Non-thermal plasma), catalyst andadsorption process was investigated for the removal of oxides of nitrogen (NO_x) and carbonmonoxide (CO) from a Diesel engine raw exhaust. The three processes were separately studied first,and then the cascaded processes, namely plasma-catalyst and plasma-adsorbent, were investigated. Inthis paper main emphasis was laid on the effect of carbonaceous soot oxidation on the plasmatreatment process. While the cascaded plasma-catalyst process exhibits a higher CO removal, thecascaded plasma-adsorbent process exhibits a higher NO_x removal. The experiments were conductedunder no-load. The plasma and adsorbent reactors were kept at room temperature throughout theexperiment while the catalyst reactor was kept at 200℃ / 300℃.
文摘Improved performance of plasma in raw engine exhaust treatment is reported. A new type of reactor referred to as of cross-flow dielectric barrier discharge (DBD) was used, in which the gas flow is perpendicular to the corona electrode. In raw exhaust environment, the cross-flow (radial-flow) reactor exhibits a superior performance with regard to NOx removal when compared to that with axial flow of gas. Experiments were conducted at different flow rates ranging from 2 L/min to 25 L/min. The plasma assisted barrier discharge reactor has shown encouraging results in NOx removal at high flow rates.
基金financially supported by the Fonds de recherche du Québec-Nature et Technologies (No. RQT00043)
文摘Diesel engine exhaust(DEE) and crystalline silica exposures occur simultaneously in the mining industry,and occupational sampling campaigns can be time-and cost-consuming. The authors evaluated a dualport system for simultaneous sampling of DEE and crystalline silica in laboratory and field conditions.Laboratory tests evaluated the operation of pumps during 8 h sampling and the intensity of the flow variation for various filter loading conditions and for different modes of operation. Field validation was performed in an underground mine. Pumps operated in constant flow or constant pressure modes.Tests in constant flow mode showed that when the flowrate increased on one side of the system, it decreased on the opposite side according to the loading intensity. Tests in constant pressure mode showed that flowrates systematically decreased when using loaded cassettes. However, the higher the backpressure setting, the lower the flow variation was. Flow variations during field tests were generally within the acceptable ±5% range. However, significant flow variations were identified in higher concentrations. A significant negative correlation was found between flowrate variation and total carbon concentration. While the majority of tests support the use of the dual-port for evaluating concomitant exposures, results highlight the possibility of filter overloading as a cause of flowrate changes.
文摘<strong>Objective:</strong> To assess the association between circulating C-reactive protein (CRP), and CRP polymorphisms in the diesel engine exhaust (DEE)-exposed workers. <strong>Methods:</strong> In 137 DEE-exposed workers and 127 unexposed comparable control workers, six urinary mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and serum CRP levels were assayed. Genotyping of four CRP single-nucleotide polymorphisms (SNPs) was measured. <strong>Results: </strong>Serum CRP levels increased in exposed versus control workers (all p < 0.001). In the DEE-exposed workers, two CRP polymorphisms were associated with serum CRP levels, the subjects of rs1205 TT genotype had lower serum CRP levels (p < 0.05 compared to TC or CC). <strong>Conclusions: </strong>Our findings suggest that polymorphisms in CRP and circulating CRP involved in the inflammatory process may play significant roles in human sensitivity to lung function injury caused by DEE exposure. This study will help investigate the underlying mechanisms of adverse respiratory effects induced by DEE.
文摘This paper reports improved performance of discharge plasma in raw engine exhaust treatment. For the purpose of investigation, both filtered and raw diesel engine exhaust were separately treated by the discharge plasma. In raw exhaust environment, the discharge plasma exhibits a superior performance with regard to NOx removal, energy consmnption and formation of by-products. In this study, experiments were conducted at conditions of different temperatures and loads.
基金supported by the National Natural Science Foundation of China (20833011 and 20803093)the 863 Project of China (2006AA06Z346)
文摘A facile procedure was carried out to prepare macroporous perovskite-type complex oxide catalysts of La1–xKxCo1–yFeyO3(x=0,0.1,y=0,0.1) by using the combined method of organic ligation and solution combustion.This method could ensure the formation of the desired macroporous structures and the desired crystal phases of the prepared catalysts.It was found that the macroporous catalysts showed higher catalytic activities for soot combustion than that of the corresponding nanometric samples,and the macroporous ...
基金supported by the Hi-Tech Research and Development Program (863) of China (No.SQ2009AA06Z313)the National Natural Science Foundation of China (No. 20803093,20833011)+1 种基金the Doctor Selected Foundation for the University of State Education Ministry of China (No. 200804251016)the Beijing Outstanding Ph.D Thesis Foundation (No. YB20091141401)
文摘A novel four-way combining catalysts containing double layers was applied to simultaneously remove four kinds of exhaust pollutants (NOx, CO, HC and PM) emitted from diesel engine. The four-way catalysts were characterized using scanning electron microscope (SEM) and Ultraviolet visible diffuse reflectance spectroscopy (UV-Vis DRS). Their catalytic performances were evaluated by temperature-programmed reaction technology. The double layer catalysts could effectively remove the four main pollutants. The highest catalytic activity was given by the two-layered catalysts of La0.6 K0.4CoO3/Al2O3 and W/HZSM-5. Under the simulated exhaust gases conditions, the peak temperature of the soot combustion was 421℃, the maximal conversion of NO to N2 was 74%, the temperature of the HC total conversion was 357℃, and the maximum conversion ratio of CO was 99%.
基金Project supported by the National Natural Science Foundation of China(51272105)Jiangsu Provincial Science and Technology Supporting Program(BE2013718)+1 种基金Research Subject of Environmental Protection Department of Jiangsu Province of China(2013006)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘A series of phosphorylation and blank CeSn_(0.8)W_(0.6)O_x/TiAl_(0.2)Si_(0.1)O_y catalysts prepared by extrusion molding were tested for NH_3-SCR of NO, and were characterized by techniques of X-ray diffraction(XRD), Brumauer-Emmett-Teller(N_2-BET), environmental scanning electron microscope(ESEM), temperature programmed reduction(H_2-TPR) and temperature programmed desorption(NH_3-TPD). Effects of phosphorylation on catalytic activity and sulfur-resisting performance of the CeSn_(0.8)W_(0.6)O_x/TiAl_(0.2)Si_(0.1)O_y for NH_3-SCR of NO were mainly studied. Results showed that the phosphorylation improved the catalytic activity and sulfur-resisting performance in an active temperature window of 300–440 °C, and the phosphorylation catalyst with 0.4 wt.% H_3PO_4 exhibited the best catalytic performance and the strongest sulfur-resisting performance. Analysis showed that the phosphorylation increased specific surface area, enhanced the surface acidity and improved redox properties.
基金supported by National Key Research and Development Project of China(No.2019YFC1805503)National Engineering Laboratory for Mobile Source Emission Control Technology(No.NELMS2019A13)+1 种基金the Open Project Program of the State Key Laboratory of Petroleum Pollution Control(No.PPC2019013)Major Science and Technology Projects of Shanxi Province(No.20181102017)。
文摘The presented work reports the selective catalytic reduction(SCR)of NO_(x) assisted by dielectric barrier discharge plasma via simulating marine diesel engine exhaust,and the experimental results demonstrate that the low-temperature activity of NH_(3)-SCR assisted by non-thermal plasma is enhanced significantly,particularly in the presence of a C_(3)H_(6) additive.Simultaneously,CeMnZrO_(x)@TiO_(2) exhibits strong tolerance to SO_(2) poisoning and superior catalytic stability.It is worthwhile to explore a new approach to remove NO_(x) from marine diesel engine exhaust,which is of vital significance for both academic research and practical applications.
基金Supported by Diesel Engine Development Program of MIIT(DEDP-1004)Natural Science Foundation of BIT(3030012211428)
文摘A turbocharged diesel engine model was built with the GT-Power software,and experimentally verified.Then two different control variables for the control of the variable geometry turbocharger(VGT)were described,and their distinct effects on engine performance,i.e.NOxand soot emissions and fuel consumption,were simulated and compared on the basis of this model.The results showed that NOxemissions decreased obviously with the increase of exhaust gas recirculation(EGR)rate at constant boost pressure condition,but soot emissions and fuel consumption considerably increased.It was a good way to reduce NOxemissions without increasing fuel consumption and soot emissions when VGT was controlled to maintain the excess oxygen ratio unchanged as EGR rate increases.
基金supported by the National Natural Science Foundation of China (No. 51006085)the Applied Basic Research Project of Yunnan Province (No. 2013FB052)Department of Education, Yunnan province (No. 2013Z081)
文摘Diesel vehicles are responsible for most of the traffic-related nitrogen oxide(NO x) emissions,including nitric oxide(NO) and nitrogen dioxide(NO2). The use of after-treatment devices increases the risk of high NO2/NO x emissions from diesel engines. In order to investigate the factors influencing NO2/NO x emissions, an emission experiment was carried out on a high pressure common-rail, turbocharged diesel engine with a catalytic diesel particulate filter(CDPF). NO2 was measured by a non-dispersive ultraviolet analyzer with raw exhaust sampling. The experimental results show that the NO2/NO x ratios downstream of the CDPF range around 20%–83%, which are significantly higher than those upstream of the CDPF. The exhaust temperature is a decisive factor influencing the NO2/NO x emissions. The maximum NO2/NO x emission appears at the exhaust temperature of 350°C. The space velocity,engine-out PM/NO x ratio(mass based) and CO conversion ratio are secondary factors. At a constant exhaust temperature, the NO2/NO x emissions decreased with increasing space velocity and engine-out PM/NO x ratio. When the CO conversion ratios range from 80% to 90%,the NO2/NO x emissions remain at a high level.