The preparation of ethanol-diesel fuel blends and their emission characteristics were investigated. Results showed the absolute ethanol can dissolve in diesel fuel at an arbitrary ratio and a small quantity of water(0...The preparation of ethanol-diesel fuel blends and their emission characteristics were investigated. Results showed the absolute ethanol can dissolve in diesel fuel at an arbitrary ratio and a small quantity of water(0.2%) addition can lead to the phase separation of blends. An organic additive was synthesized and it can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The emission characteristics of 10%, 20%, and 30% ethanol-diesel fuel blends, with or without additives, were compared with those of diesel fuel in a direct injection(DI) diesel engine. The experimental results indicated that the blend of ethanol with diesel fuel significantly reduced the concentrations of smoke, hydrocarbon(HC), and carbon monoxide(CO) in exhaust gas. Using 20% ethanol-diesel fuel blend with the additive of 2% of the total volume, the optimum mixing ratio was achieved, at which the bench diesel engine testing showed a significant decrease in exhaust gas. Bosch smoke number was reduced by 55%, HC emission by 70%, and CO emission by 45%, at 13 kW/1540 r/min. However, ethanol-diesel fuel blends produced a few ppm acetaldehydes and more ethanol in exhaust gas.展开更多
In this study, the principal objective is to compare the performances of an air<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">cooled one cylinder, f...In this study, the principal objective is to compare the performances of an air<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">cooled one cylinder, four</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">stroke direct injection diesel engine using the blends (5% by volume B5, 10% by volume B10) of diesel and biodiesels derived respectively from palm oil, castor oil and raphia sese De Wild oil with pure diesel. All the biodiesels used in this work come from the plant species of the democratic republic of Congo as listed above. The engine performances (power, torque and brake specific consumption)</span><span> </span><span style="font-family:Verdana;">at different engine speeds were determined at both full and partial loads. According to experimental results, the increments in the power output and torque when the mixtures of diesel and biodiesels were used</span><span style="font-family:Verdana;"> and</span><span> </span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> observed. </span><span style="font-family:Verdana;">On</span><span style="font-family:Verdana;"> the other side, the specific fuel consumption of the mixtures is higher than that of pure diesel</span><span> </span><span style="font-family:Verdana;">although the calculated lower heating values </span><span style="font-family:Verdana;">are almost within the same range</span><span style="font-family:Verdana;"> for the all studied fuels. Finally, in partial load 1/1, pure diesel blended with biodiesels B5 derived from castor oil presented high specific brake consumption values compared to the other fuels while B10 from the same oil presents low brake specific consumption values for power greater than 3</span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;">2 kW.</span>展开更多
Diesel molecular compositional model has important application for diesel quality prediction,blending,and molecular-level process model development.In this paper,different types of diesel molecular compositional and b...Diesel molecular compositional model has important application for diesel quality prediction,blending,and molecular-level process model development.In this paper,different types of diesel molecular compositional and blending models were constructed based on the SU-BEM framework.More than 1500 representative molecules were selected to form the molecular structure library.The probability density functions(PDFs)combination was determined by experimental data and experience.A quadratic optimization strategy combining genetic algorithm with local optimization algorithm was adopted to improve the accuracy of the compositional model.The model results show good agreement with the experimental data.The diesel blending model was constructed at the molecular-level based on the above diesel compositional models.The properties of the blending model accord with the experimental regulations.It is proved that the compositional models and blending model constructed have high accuracy and strong prediction capability,and are applicable to the industrial process.展开更多
γ-valerolactone (GVL) is a C5-cyclic ester that can be produced from biomass providing a potentially renewable fuel for transportation and feedstock for the chemical industry. Experiments were performed with fossil d...γ-valerolactone (GVL) is a C5-cyclic ester that can be produced from biomass providing a potentially renewable fuel for transportation and feedstock for the chemical industry. Experiments were performed with fossil diesel (D), D + biodiesel (BD) and D + BD + GVL blends. A four-cylinder, turbocharged direct injection diesel engine was used for the tests. The engine was coupled to a dynamometer to vary the load. CO, NOx, THC and smoke emissions were measured by using a multi-channel gas analyzer. Combustion characteristics were assessed by in-cylinder pressure data with respect to crank angle and the derived heat release rates. Compared with D, and D + BD blends, addition of GVL had relatively little effect on engine performance and NOx emission, but reduced the exhaust concentration of CO, unburned fuel and smoke significantly. The smoke reduction is particularly notable in view of the very recent suggestion that black carbon is the second most important greenhouse gas in the atmosphere next to carbon dioxide. No diesel engine study with GVL has been reported so far.展开更多
This work focuses on blending Jatropha oil with diesel fuel and heptane to improve its physico-chemical characteristics for production of blends and their use as fuel in a diesel engine. The influence of the heptane c...This work focuses on blending Jatropha oil with diesel fuel and heptane to improve its physico-chemical characteristics for production of blends and their use as fuel in a diesel engine. The influence of the heptane content was evaluated by comparing the results obtained from the engine (performance and combustion parameters) with those of the diesel fuel and straight Jatropha oil. The results obtained show an improvement in engine performance especially at low loads. Specifically, a reduction in the specific fuel consumption of the engine is obtained when the heptane content in the mixture is around 10% compared to that obtained with pure Jatropha oil. The best results were obtained with the blend containing 70% Jatropha oil, 20% diesel fuel and 10% heptane (J70G20H10). Overall engine efficiency and exhaust gas temperatures are comparable for all fuels tested. Engine combustion parameters are improved with J70G20H10. The results obtained with J70G20H10 are close to those of the engine operating on diesel fuel. The cyclic dispersion is low with coefficients of variation of the indicated mean effective pressure (COV<sub>IMEP</sub>) whose values are less than 10%. The lowest values of the COV<sub>IMEP</sub> are obtained with the blend J70G20H10.展开更多
Effect of 1,1-dibutoxybutane (DBB) addition on petroleum DF (diesel fuel) performance has been studied. The study wasstarted by preparing DBB from decomposition of 1 -butanol on manganese impregnated on activated ...Effect of 1,1-dibutoxybutane (DBB) addition on petroleum DF (diesel fuel) performance has been studied. The study wasstarted by preparing DBB from decomposition of 1 -butanol on manganese impregnated on activated carbon (Mn/AC) catalyst at 450 ℃ in stainless steel reactor. The product was distilled at 200 ℃ and the residue obtained was analyzed by GC-MS and HSQC NMR toconfirm its structure and purity. The DBB-DF mixtures were prepared at different compositions and determined their excess molarvolume, homogeneity, phase stability, ignition quality, lubricity, cold flow quality, energy content, and viscosity. The addition of DBBinto DF formed a homogeneous mixture and had a good phase stability. The mixtures gave positive excess molar volume values overthe whole concentration ranges. The ignition quality and lubricity of the mixtures increased without lost in cold flow quality. Slightdecreased in viscosity and energy content per mass unit were observed.展开更多
A new continuous process for preparing methanol-diesel emulsified fuel with an Impinging Stream-Rotating Packed Bed is proposed. The droplet size of dispersed phase(methanol) of the emulsified fuel has a significant e...A new continuous process for preparing methanol-diesel emulsified fuel with an Impinging Stream-Rotating Packed Bed is proposed. The droplet size of dispersed phase(methanol) of the emulsified fuel has a significant effect on the combustion of methanol-diesel emulsified fuel. In this paper, the methanol-diesel emulsified fuel uses diesel as the continuous phase and methanol as the dispersed phase. The Sauter mean diameter of the dispersed phase of methanol-diesel emulsified fuel was characterized with microphotography and arithmetic method. The experimental result showed that the Sauter mean diameter of the dispersed phase, which was decreased with the augmentation of the high gravity factor, liquid flow rate and emulsifier dosage, was inversely proportional to the methanol content. The Sauter mean diameter of the dispersed phase can be controlled and adjusted in the range of 12—40 μm through the change of operating conditions. The correlative expressions of the Sauter mean diameter of emulsified fuel were obtained and the calculated values agreed well with the experimental values.展开更多
The present work is focusing on the synthesization and physico-chemical properties of Jatropha curcas biodiesel with diesel and alcohols.The densities of binary diesel(2)+1-alkanols(C_(3) or C_(4))(3)and ternary Jatro...The present work is focusing on the synthesization and physico-chemical properties of Jatropha curcas biodiesel with diesel and alcohols.The densities of binary diesel(2)+1-alkanols(C_(3) or C_(4))(3)and ternary Jatropha curcas biodiesel(1)+diesel(2)+1-alkanols(C_(3)or C_(4))(3)blends have been reported over full range of composition at temperatures within range 288.15 to 313.15 K.Also densities of Jatropha curcas biodiesel(1)+diesel or 1-alkanols(C_(3) or C_(4))(2)blends have been measured at 313.15 K.Excess molar volumes,V^E,V^E_(123)of binary and ternary blends were calculated from the measured data and the derived properties were correlated to composition using Redlich-Kister equation.A reasonable agreement was found between the measured and estimated values.Further,densities and excess molar volumes data were reasoned to discuss molecular interactions taking into consideration effect of composition and temperature.展开更多
Taking into account the actual crude slate processed at the refinery, it is necessary to make reasonable combination and blending of crude oils. In order to cope with high wax content in diesel fuel it is proposed to ...Taking into account the actual crude slate processed at the refinery, it is necessary to make reasonable combination and blending of crude oils. In order to cope with high wax content in diesel fuel it is proposed to appropriately regulate the refining process scheme and add additives to refined products. This measure after being applied in the production practice has brought about good results and has met the needs of commercial production.展开更多
Biodiesel is considering a clean-burning fuel produced from non edible vegetable oils, or animal fats. It is produced by transesterification of oils with short-chain alcohols or by the esterification of fatty acids. I...Biodiesel is considering a clean-burning fuel produced from non edible vegetable oils, or animal fats. It is produced by transesterification of oils with short-chain alcohols or by the esterification of fatty acids. In the present context, biodiesel is an alternative eco friendly diesel fuel. Keeping this in view, an attempt has been made through the experiment of Thumba blended biodiesel on CI engine in laboratory and analyzes its properties and characteristic compare with other biodiesel oils. Five blends B05, B10, B15, B20 and B25 of thumba seed oil biodiesel were papered and it performance was evaluated with 7HP four-stroke diesel engine. The performance of thumba seed oil biodiesel were compared with biodiesel prepared by mustard, castor and Jatropha seed oil with same blends.展开更多
The population which could not access to electricity was around 1.2 billion in 2010 and is distributed in many low developing countries. With the increase in the population and the economic growth in those countries, ...The population which could not access to electricity was around 1.2 billion in 2010 and is distributed in many low developing countries. With the increase in the population and the economic growth in those countries, waste generation is growing rapid especially for the organic and the plastic, and the uncontrolled waste disposal is becoming more serious issues to manage it. The interest on waste to energy is growing by the above drivers. This research was carried out for aiming to the real world adaption at the minimum cost of the pyrolysis oil from waste biomass in a diesel engine, mainly for electricity generation. The proposal of the appropriate adaptable blend ratio was the major scope rather than the optimization of the engine parameters. For the sake of it, the pyrolysis oil of the waste biomass was produced from a gasification pilot plant in Japan and blended with biodiesel at minimum effort. A small single cylinder diesel engine (direct injection) was used for the experiment with regard to full load power-output, exhaust emissions and fuel consumption.展开更多
Mixed crude palm oil (MCPO), the mixture of palm fiber oil and palm kernel oil, has become of great interest as a renewable energy source. It can be easily extracted from whole dried palm fruits. In the present work...Mixed crude palm oil (MCPO), the mixture of palm fiber oil and palm kernel oil, has become of great interest as a renewable energy source. It can be easily extracted from whole dried palm fruits. In the present work, the degummed, deacidified MCPO was blended in petroleum diesel at portions of 30% and 40% by volume and then tested in agricultural diesel engines for long term usage. The particulates from the exhaust of the engines were collected every 500 hr using a four-stage cascade air sampler. The 50% cut-off aerodynamic diameters for the first three stages were 10, 2.5 and 1μm, while the last stage collected all particles smaller than 1 μm. Sixteen particle bounded polycyclic aromatic hydrocarbons (PAHs) were analyzed using a high performance liquid chromatography. The results indicated that the size distribution of particulate matter was in the accmnulation mode and the pattern of total PAHs associated with fine-particles (〈 1 μm) showed a dominance of larger molecular weight PAHs (4--6 aromatic rings), especially pyrene. The mass median diameter, PM and total PAH concentrations decreased when increasing the palm oil content, but increased when the running hours of the engine were increased. In addition, Commercial petroleum diesel (PB0) gave the highest value of carcinogenic potency equivalent (BaPeq) for all particle size ranges. As the palm oil was increased, the; BaPeq decreased gradually. Therefore the degununed-deacidified MCPO blends are recommended for diesel substitute.展开更多
文摘The preparation of ethanol-diesel fuel blends and their emission characteristics were investigated. Results showed the absolute ethanol can dissolve in diesel fuel at an arbitrary ratio and a small quantity of water(0.2%) addition can lead to the phase separation of blends. An organic additive was synthesized and it can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The emission characteristics of 10%, 20%, and 30% ethanol-diesel fuel blends, with or without additives, were compared with those of diesel fuel in a direct injection(DI) diesel engine. The experimental results indicated that the blend of ethanol with diesel fuel significantly reduced the concentrations of smoke, hydrocarbon(HC), and carbon monoxide(CO) in exhaust gas. Using 20% ethanol-diesel fuel blend with the additive of 2% of the total volume, the optimum mixing ratio was achieved, at which the bench diesel engine testing showed a significant decrease in exhaust gas. Bosch smoke number was reduced by 55%, HC emission by 70%, and CO emission by 45%, at 13 kW/1540 r/min. However, ethanol-diesel fuel blends produced a few ppm acetaldehydes and more ethanol in exhaust gas.
文摘In this study, the principal objective is to compare the performances of an air<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">cooled one cylinder, four</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">stroke direct injection diesel engine using the blends (5% by volume B5, 10% by volume B10) of diesel and biodiesels derived respectively from palm oil, castor oil and raphia sese De Wild oil with pure diesel. All the biodiesels used in this work come from the plant species of the democratic republic of Congo as listed above. The engine performances (power, torque and brake specific consumption)</span><span> </span><span style="font-family:Verdana;">at different engine speeds were determined at both full and partial loads. According to experimental results, the increments in the power output and torque when the mixtures of diesel and biodiesels were used</span><span style="font-family:Verdana;"> and</span><span> </span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> observed. </span><span style="font-family:Verdana;">On</span><span style="font-family:Verdana;"> the other side, the specific fuel consumption of the mixtures is higher than that of pure diesel</span><span> </span><span style="font-family:Verdana;">although the calculated lower heating values </span><span style="font-family:Verdana;">are almost within the same range</span><span style="font-family:Verdana;"> for the all studied fuels. Finally, in partial load 1/1, pure diesel blended with biodiesels B5 derived from castor oil presented high specific brake consumption values compared to the other fuels while B10 from the same oil presents low brake specific consumption values for power greater than 3</span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;">2 kW.</span>
基金supported by the SINOPEC R&D Program(grant number 119014-1)
文摘Diesel molecular compositional model has important application for diesel quality prediction,blending,and molecular-level process model development.In this paper,different types of diesel molecular compositional and blending models were constructed based on the SU-BEM framework.More than 1500 representative molecules were selected to form the molecular structure library.The probability density functions(PDFs)combination was determined by experimental data and experience.A quadratic optimization strategy combining genetic algorithm with local optimization algorithm was adopted to improve the accuracy of the compositional model.The model results show good agreement with the experimental data.The diesel blending model was constructed at the molecular-level based on the above diesel compositional models.The properties of the blending model accord with the experimental regulations.It is proved that the compositional models and blending model constructed have high accuracy and strong prediction capability,and are applicable to the industrial process.
文摘γ-valerolactone (GVL) is a C5-cyclic ester that can be produced from biomass providing a potentially renewable fuel for transportation and feedstock for the chemical industry. Experiments were performed with fossil diesel (D), D + biodiesel (BD) and D + BD + GVL blends. A four-cylinder, turbocharged direct injection diesel engine was used for the tests. The engine was coupled to a dynamometer to vary the load. CO, NOx, THC and smoke emissions were measured by using a multi-channel gas analyzer. Combustion characteristics were assessed by in-cylinder pressure data with respect to crank angle and the derived heat release rates. Compared with D, and D + BD blends, addition of GVL had relatively little effect on engine performance and NOx emission, but reduced the exhaust concentration of CO, unburned fuel and smoke significantly. The smoke reduction is particularly notable in view of the very recent suggestion that black carbon is the second most important greenhouse gas in the atmosphere next to carbon dioxide. No diesel engine study with GVL has been reported so far.
文摘This work focuses on blending Jatropha oil with diesel fuel and heptane to improve its physico-chemical characteristics for production of blends and their use as fuel in a diesel engine. The influence of the heptane content was evaluated by comparing the results obtained from the engine (performance and combustion parameters) with those of the diesel fuel and straight Jatropha oil. The results obtained show an improvement in engine performance especially at low loads. Specifically, a reduction in the specific fuel consumption of the engine is obtained when the heptane content in the mixture is around 10% compared to that obtained with pure Jatropha oil. The best results were obtained with the blend containing 70% Jatropha oil, 20% diesel fuel and 10% heptane (J70G20H10). Overall engine efficiency and exhaust gas temperatures are comparable for all fuels tested. Engine combustion parameters are improved with J70G20H10. The results obtained with J70G20H10 are close to those of the engine operating on diesel fuel. The cyclic dispersion is low with coefficients of variation of the indicated mean effective pressure (COV<sub>IMEP</sub>) whose values are less than 10%. The lowest values of the COV<sub>IMEP</sub> are obtained with the blend J70G20H10.
文摘Effect of 1,1-dibutoxybutane (DBB) addition on petroleum DF (diesel fuel) performance has been studied. The study wasstarted by preparing DBB from decomposition of 1 -butanol on manganese impregnated on activated carbon (Mn/AC) catalyst at 450 ℃ in stainless steel reactor. The product was distilled at 200 ℃ and the residue obtained was analyzed by GC-MS and HSQC NMR toconfirm its structure and purity. The DBB-DF mixtures were prepared at different compositions and determined their excess molarvolume, homogeneity, phase stability, ignition quality, lubricity, cold flow quality, energy content, and viscosity. The addition of DBBinto DF formed a homogeneous mixture and had a good phase stability. The mixtures gave positive excess molar volume values overthe whole concentration ranges. The ignition quality and lubricity of the mixtures increased without lost in cold flow quality. Slightdecreased in viscosity and energy content per mass unit were observed.
基金financially supported by the Natural Science Foundation of China (No.21206153, 21376229)the Science and Technology Foundation of Province Shanxi of China (No.2010021007-2, 2012011008-2)
文摘A new continuous process for preparing methanol-diesel emulsified fuel with an Impinging Stream-Rotating Packed Bed is proposed. The droplet size of dispersed phase(methanol) of the emulsified fuel has a significant effect on the combustion of methanol-diesel emulsified fuel. In this paper, the methanol-diesel emulsified fuel uses diesel as the continuous phase and methanol as the dispersed phase. The Sauter mean diameter of the dispersed phase of methanol-diesel emulsified fuel was characterized with microphotography and arithmetic method. The experimental result showed that the Sauter mean diameter of the dispersed phase, which was decreased with the augmentation of the high gravity factor, liquid flow rate and emulsifier dosage, was inversely proportional to the methanol content. The Sauter mean diameter of the dispersed phase can be controlled and adjusted in the range of 12—40 μm through the change of operating conditions. The correlative expressions of the Sauter mean diameter of emulsified fuel were obtained and the calculated values agreed well with the experimental values.
文摘The present work is focusing on the synthesization and physico-chemical properties of Jatropha curcas biodiesel with diesel and alcohols.The densities of binary diesel(2)+1-alkanols(C_(3) or C_(4))(3)and ternary Jatropha curcas biodiesel(1)+diesel(2)+1-alkanols(C_(3)or C_(4))(3)blends have been reported over full range of composition at temperatures within range 288.15 to 313.15 K.Also densities of Jatropha curcas biodiesel(1)+diesel or 1-alkanols(C_(3) or C_(4))(2)blends have been measured at 313.15 K.Excess molar volumes,V^E,V^E_(123)of binary and ternary blends were calculated from the measured data and the derived properties were correlated to composition using Redlich-Kister equation.A reasonable agreement was found between the measured and estimated values.Further,densities and excess molar volumes data were reasoned to discuss molecular interactions taking into consideration effect of composition and temperature.
文摘Taking into account the actual crude slate processed at the refinery, it is necessary to make reasonable combination and blending of crude oils. In order to cope with high wax content in diesel fuel it is proposed to appropriately regulate the refining process scheme and add additives to refined products. This measure after being applied in the production practice has brought about good results and has met the needs of commercial production.
文摘Biodiesel is considering a clean-burning fuel produced from non edible vegetable oils, or animal fats. It is produced by transesterification of oils with short-chain alcohols or by the esterification of fatty acids. In the present context, biodiesel is an alternative eco friendly diesel fuel. Keeping this in view, an attempt has been made through the experiment of Thumba blended biodiesel on CI engine in laboratory and analyzes its properties and characteristic compare with other biodiesel oils. Five blends B05, B10, B15, B20 and B25 of thumba seed oil biodiesel were papered and it performance was evaluated with 7HP four-stroke diesel engine. The performance of thumba seed oil biodiesel were compared with biodiesel prepared by mustard, castor and Jatropha seed oil with same blends.
文摘The population which could not access to electricity was around 1.2 billion in 2010 and is distributed in many low developing countries. With the increase in the population and the economic growth in those countries, waste generation is growing rapid especially for the organic and the plastic, and the uncontrolled waste disposal is becoming more serious issues to manage it. The interest on waste to energy is growing by the above drivers. This research was carried out for aiming to the real world adaption at the minimum cost of the pyrolysis oil from waste biomass in a diesel engine, mainly for electricity generation. The proposal of the appropriate adaptable blend ratio was the major scope rather than the optimization of the engine parameters. For the sake of it, the pyrolysis oil of the waste biomass was produced from a gasification pilot plant in Japan and blended with biodiesel at minimum effort. A small single cylinder diesel engine (direct injection) was used for the experiment with regard to full load power-output, exhaust emissions and fuel consumption.
基金supports from Prince of Songkla University(an annual research grant for fiscal years 2008-2010),the Center of Excellence for Innovation in Chemistry(PERCH-CIC),Office of the Higher Education Commission,Ministry of Education,Thailandthe Chaipattana Foundation under the support of the King of Thailand
文摘Mixed crude palm oil (MCPO), the mixture of palm fiber oil and palm kernel oil, has become of great interest as a renewable energy source. It can be easily extracted from whole dried palm fruits. In the present work, the degummed, deacidified MCPO was blended in petroleum diesel at portions of 30% and 40% by volume and then tested in agricultural diesel engines for long term usage. The particulates from the exhaust of the engines were collected every 500 hr using a four-stage cascade air sampler. The 50% cut-off aerodynamic diameters for the first three stages were 10, 2.5 and 1μm, while the last stage collected all particles smaller than 1 μm. Sixteen particle bounded polycyclic aromatic hydrocarbons (PAHs) were analyzed using a high performance liquid chromatography. The results indicated that the size distribution of particulate matter was in the accmnulation mode and the pattern of total PAHs associated with fine-particles (〈 1 μm) showed a dominance of larger molecular weight PAHs (4--6 aromatic rings), especially pyrene. The mass median diameter, PM and total PAH concentrations decreased when increasing the palm oil content, but increased when the running hours of the engine were increased. In addition, Commercial petroleum diesel (PB0) gave the highest value of carcinogenic potency equivalent (BaPeq) for all particle size ranges. As the palm oil was increased, the; BaPeq decreased gradually. Therefore the degununed-deacidified MCPO blends are recommended for diesel substitute.