We have studied numerically a simple crack growth model in a two-dimensional triangular lattice of bonds and nodes which incorporates the surface of a growing crack bond-breaking probability P-i similar to exp{(-V-i+E...We have studied numerically a simple crack growth model in a two-dimensional triangular lattice of bonds and nodes which incorporates the surface of a growing crack bond-breaking probability P-i similar to exp{(-V-i+E(i))phi(T)}, where E(i) is elastic energy stored in the i-th bond. Different energy temperature factors phi(T) are employed during crack formation and propagation process with a uniform dilation strain case and a shear case and with periodic boundary condition in the horizontal direction. Our results show that the patterns of the cracks generated are fractal structure and the effective fractal dimensionalities decrease with the increase of the temperature factor phi(T)(the absolute temperature T decreasing). In the paper we also discuss the relation between the effective fractal dimension D-eff (the radius R(g) of gyration) and the fractal dimensions D (the radius R of circular), and also give their modification values Omega about two kinds of methods in the lattice model.展开更多
The densification and the fractal dimensions of carbon-nickel films annealed at different temperatures 300, 500, 800, and 1000℃ with emphasis on porosity evaluation are investigated. For this purpose, the refractive...The densification and the fractal dimensions of carbon-nickel films annealed at different temperatures 300, 500, 800, and 1000℃ with emphasis on porosity evaluation are investigated. For this purpose, the refractive index of films is determined from transmittance spectra. Three different regimes are identified, T 〈 500℃, 500℃ 〈 T 〈 800℃ and T 〉 800℃. The Rutherford baekscattering spectra show that with increasing the annealing temperature, the concentration of nickel atoms into films decreases. It is shown that the effect of annealing temperatures for increasing films densification at T 〈 500℃ and T 〉 800℃ is greater than the effect of nickel concentrations. It is observed that the effect of decreasing nickel atoms into films at 500℃ 〈 T 〈 800℃ strongly causes improving porosity and decreasing densification. The fractal dimensions of carbon-nickel films annealed from 300 to 500℃ are increased, while from 500 to 1000℃ these characteristics are decreased. It can be seen that at 800℃, films have maximum values of porosity and roughness.展开更多
Modified novel high silicon steel (MNHS, a newly developed reduced-activation martensitic alloy) and commercial alloy Tgl are implanted with 200 keV He2+ ions to a dose of 5 × 1020 ions/m2 at 300, 450 and 560~...Modified novel high silicon steel (MNHS, a newly developed reduced-activation martensitic alloy) and commercial alloy Tgl are implanted with 200 keV He2+ ions to a dose of 5 × 1020 ions/m2 at 300, 450 and 560~C. Transmission electron microscopy (TEM) is used to characterize the size and morphology of He bubbles. With the increase of the implantation temperature, TEM observations indicate that bubbles increase in size and the proportion of 'brick shaped' cuboid bubbles increases while the proportion of polyhedral bubbles decreases in both the steel samples. For the samples implanted at the same temperature, the average size of He bubbles in MNHS is smaller than that in T91. This might be due to the abundance of boundaries and precipitates in MNHS, which provide additional sites for the trapping of He atoms, thus reduce the susceptibility of MNHS to He embrittlement.展开更多
The viscosities, η, and ultrasonic speeds, u, of pure benzene, triethylamine, (TEA) tributylamine, (TBA), and those of their binary mixtures, with benzene as common component, covering the whole composition range...The viscosities, η, and ultrasonic speeds, u, of pure benzene, triethylamine, (TEA) tributylamine, (TBA), and those of their binary mixtures, with benzene as common component, covering the whole composition range have been measured at 278.15 K, 283.15 K, 288.15 K, 293.15 K, 298.15 K, 303.15 K, 308.15 K, 313.15 K, and 318.15 K. From the experimental data the deviations in viscosity, △η, deviations in Gibbs free energy, AG, deviations in ultrasonic speed, △u, deviations in entropies, △S^*, and deviations in enthalpies, △H^*, of activation of viscous flow have been determined. The sign and magnitude of these parameters were found to be sensitive towards interactions prevailing in the studied systems. Further, the excess molar volumes, VE, were calculated using data for the binary mixtures. Moreover, theoretical values of viscosities and ultrasonic speeds of the binary mixtures were calculated using different empirical relations and theories. The results were in experimental and theoretical values. discussed in terms of average deviations (AD)展开更多
It is theoretically investigated the generation of higher harmonics of two-dimensional and three-dimensional terahertz electromagnetic beams in nonlinear crystals. The attention is paid to crystalline paraelectrics li...It is theoretically investigated the generation of higher harmonics of two-dimensional and three-dimensional terahertz electromagnetic beams in nonlinear crystals. The attention is paid to crystalline paraelectrics like SrTiO<sub>3</sub> under the temperatures 60 - 200 K, these crystals possess the cubic nonlinearity. The bias electric field is applied to provide the dominating quadratic nonlinearity. The initial focusing of the beams not only increases the efficiency of generation of higher harmonics, but alto makes possible to select maxima of different higher harmonics at some distances from the input. At lower temperatures the nonlinearity behaves at smaller input amplitudes, whereas at higher temperatures the harmonic generation can be observed at higher frequencies up to 1.5 THz. In three-dimensional beams the peak amplitudes of higher harmonics can be bigger than in two-dimensional beams, but the ratios of these peak values to the maximum values of the focused first harmonic are smaller than in two-dimensional beams.展开更多
InGaN-based green light-emitting diodes (LEDs) with different growth temperatures of superlattice grown on Si (111) substrates are investigated by temperature-dependent electroluminescence between 100 K and 350K. ...InGaN-based green light-emitting diodes (LEDs) with different growth temperatures of superlattice grown on Si (111) substrates are investigated by temperature-dependent electroluminescence between 100 K and 350K. It is observed that with the decrease of the growth temperature of the superlattice from 895℃ to 855℃, the forward voltage decreases, especially at low temperature. We presume that this is due to the existence of the larger average size of V-shaped pits, which is determined by secondary ion mass spectrometer measurements. Meanwhile, the sample with higher growth temperature of superlattice shows a severer efficiency droop at cryogenic temperatures (about 100 K-150 K). Electron overflow into p-GaN is considered to be the cause of such phenomena, which is relevant to the poorer hole injection into multiple quantum wells and the more reduced effective active volume in the active region.展开更多
The mass and thermal coupling makes the control of the reactive double dividing-wall distillation column(R-DDWDC) an especially challenging issue with a highly interactive nature. With reference to the separation of a...The mass and thermal coupling makes the control of the reactive double dividing-wall distillation column(R-DDWDC) an especially challenging issue with a highly interactive nature. With reference to the separation of an ideal endothermic quaternary reversible reaction with the most unfavorable ranking of relative volatilities(A + B ■ C + D with α_(A)>α_(C)>α_(D)>α_(B)), the operation rationality of the R-DDWDC is studied in this contribution. The four-point single temperature control system leads to great steady-state discrepancies in the compositions of products C and D and the reason stems essentially from the failure in keeping strictly the stoichiometric ratio between reactants A and B. A temperature plus temperature cascade control scheme is then employed to reinforce the stoichiometric ratio control and helps to secure a substantial abatement in the steady-state discrepancies. A temperature difference plus temperature cascade control scheme is finally synthesized and leads even to better performance than the most effective double temperature difference control scheme. These outcomes reveal not only the operation feasibility of the R-DDWDC but also the general significance of the proposed temperature difference plus temperature cascade control scheme to the inferential control of any other complicated distillation columns.展开更多
A theoretical study based on the Penalty factor(PF)method by Cavallini et al.is conducted to show that the pressure drop occurring in a wire-on-tube heat exchanger can be converted into a temperature difference for tw...A theoretical study based on the Penalty factor(PF)method by Cavallini et al.is conducted to show that the pressure drop occurring in a wire-on-tube heat exchanger can be converted into a temperature difference for two types of refrigerants R-134a and R-600a typically used for charging refrigerators and freezers.The following conditions are considered:stratified or stratified-wavyflow condensation occurring inside the smooth tube of a wire-on-tube condenser with diameter 3.25,4.83,and 6.299 mm,condensation temperatures 35℃,45℃,and 54.4℃ and cover refrigerant massflow rate spanning the interval from 1 to 7 kg/hr.The results show that the PF variation is not linear with vapor quality and attains a maximum when the vapor quality is 0.2 and 0.18 for the R-134a and R-600a refrigerants,respectively.The PF increases with the refrigerant massflow rate if the inner diameter and saturation temperature constant,and it decreases on increasing the inner diameter to 6.299 mm for constant refrigerant massflow rate and saturation temperature.The PF for R-600a is higher than that for R-134a due to the lower saturation pressure in thefirst case.Furthermore,a stratifiedflow produces higher PF in comparison to the annularflow due to the effect of the surface tension.展开更多
Tannins are capable of producing natural dyes with antioxidant and antibacterial propertis,while synthetic dyes are commonly used in the textile industry,causing environmental issues like water pollution.This research...Tannins are capable of producing natural dyes with antioxidant and antibacterial propertis,while synthetic dyes are commonly used in the textile industry,causing environmental issues like water pollution.This research aims to utilize waste tannins as natural dyes as an alternative to synthetic dyes.This study examined the effect of the extraction method on tannin properties such as phenolic content,antioxidants,and antibacterial activity.In addition,Pyrolysis Gas Chromatography‒Mass Spectrometry(Py-GCMS)analysis was used to identify the effect of extraction temperature on the chemical elucidation of tannin.The effect of tannin concentration was evaluated against four bacteria that are usually found on human skin:Staphylococcus epidermidis,Bacillus subtilis,Propionibacterium acnes,and Staphylococcus aureus.Extraction temperature significantly influences the chemical composition of tannin,which leads to different antioxidant properties.The maximum antibacterial properties of tannin were obtained at 90℃with the inhibition zone in the range of 0.9–1.0 mm against four bacteria,tannin yield of 26.59%,Gallic Acid Equivalents or total phenolic content(GAE)of 40.30 mg/g,and Radical Scavenging Activity or antioxidant activity(RSA)of 89.88%.Moreover,the concentration of tannin was significantly linear with its antibacterial properties.Tannin was successfully applied to the textile by using alum as a mordanting agent to create an antibacterial textile.The textile’s bacterial structure damage was analyzed under Field Emission Scanning Electron Microscopy(FESEM).After 50 washings,tannin-textiles with alum-modified properties remained stable compared to those without alum,with S.aureus and S.epidermidis being the most vulnerable bacteria,as confirmed by FESEM images.Hence,tannin is a feasible alternative to harmful and nondegradable synthetic dyes and antibacterial agents.展开更多
Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors ...Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors of frozen rock is evaluated by testing the tension fracture toughness(KIC)of frozen rock at different temperatures(i.e.-20℃,-15℃,-12℃,-10℃,-8℃,-6℃,-4℃,-2℃,and 0℃).Acoustic emission(AE)and digital image correlation(DIC)methods are utilized to analyze the microcrack propagation during fracturing.The melting of pore ice is measured using nuclear magnetic resonance(NMR)method.The results indicate that:(1)The KIC of frozen rock decreases moderately between-20℃ and-4℃,and rapidly between-4℃ and 0℃.(2)At-20℃ to-4℃,the fracturing process,deduced from the DIC results at the notch tip,exhibits three stages:elastic deformation,microcrack propagation and microcrack coalescence.However,at-4℃e0℃,only the latter two stages are observed.(3)At-4℃e0℃,the AE activities during fracturing are less than that at-20℃ to-4℃,while more small events are reported.(4)The NMR results demonstrate a reverse variation trend in pore ice content with increasing temperature,that is,a moderate decrease is followed by a sharp decrease and-4℃ is exactly the critical temperature.Next,we interpret the thawing-induced softening effect by linking the evolution in microscopic structure of frozen rock with its macroscopic fracture behaviors as follow:from-20℃ to-4℃,the thickening of the unfrozen water film diminishes the cementation strength between ice and rock skeleton,leading to the decrease in fracture parameters.From-4℃ to 0℃,the cementation effect of ice almost vanishes,and the filling effect of pore ice is reduced significantly,which facilitates microcrack propagation and thus the easier fracture of frozen rocks.展开更多
The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and soci...The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and society.Technological exploration and research in the field of deep space science,especially lunar-based exploration,is a scientific strategy that has been pursued in China and worldwide.Drilling and sampling are key to accurate exploration of the desirable characteristics of deep lunar resources.In this study,an in-situ condition preserved coring(ICP-Coring)and analysis system,which can be used to test drilling tools and develop effective sampling strategies,was designed.The key features of the system include:(1)capability to replicate the extreme temperature fluctuations of the lunar environment(-185 to 200℃)with intelligent temperature control;(2)ability to maintain a vacuum environment at a scale of 10^(-3) Pa,both under unloaded conditions within Ф580 mm×1000 mm test chamber,and under loaded conditions using Ф400 mm×800 mm lunar rock simulant;(3)application of axial pressures up to 4 MPa and confining pressures up to 3.5 MPa;(4)sample rotation at any angle with a maximum sampling length of 800 mm;and(5)multiple modes of rotary-percussive drilling,controlled by penetration speed and weight on bit(WOB).Experimental studies on the drilling characteristics in the lunar rock simulant-loaded state under different drill bit-percussive-vacuum environment configurations were conducted.The results show that the outgassing rate of the lunar soil simulant is greater than that of the lunar rock simulant and that a low-temperature environment contributes to a reduced vacuum of the lunar-based simulated environment.The rotary-percussive drilling method effectively shortens the sampling time.With increasing sampling depth,the temperature rise of the drilling tools tends to rapidly increase,followed by slow growth or steady fluctuations.The temperature rise energy accumulation of the drill bits under vacuum is more significant than that under atmospheric pressure,approximately 1.47 times higher.The real-time monitored drilling pressure,penetration speed and rotary torque during drilling serve as parameters for discriminating the drilling status.The results of this research can provide a scientific basis for returning samples from lunar rock in extreme lunar-based environments.展开更多
The annual, interannual and inter-decadal variability of convection intensity of South China Sea (SCS) summer monsoon and air-sea temperature difference in the tropical ocean is analyzed, and their relationship is dis...The annual, interannual and inter-decadal variability of convection intensity of South China Sea (SCS) summer monsoon and air-sea temperature difference in the tropical ocean is analyzed, and their relationship is discussed using two data sets of 48-a SODA (simple ocean data assimilation) and NCEP/NCAR. Analyses show that in wintertime Indian Ocean (WIO), springtime central tropical Pacific (SCTP) and summertime South China Sea-West Pacific (SSCSWP), air-sea temperature difference is significantly associated with the convection intensity of South China Sea summer monsoon. Correlation of the inter-decadal time scale (above 10 a) is higher and more stable. There is inter-decadal variability of correlation in scales less than 10 a and it is related with the air-sea temperature difference itself for corresponding waters. The inter-decadal variability of the convection intensity during the South China Sea summer monsoon is closely related to the inter-decadal variability of the general circulation of the atmosphere. Since the late period of the 1970s, in the lower troposphere, the cross-equatorial flow from the Southern Hemisphere has intensified. At the upper troposphere layer, the South Asian high and cross-equatorial flow from the Northern Hemisphere has intensified at the same time. Then the monsoon cell has also strengthened and resulted in the reinforcing of the convection of South China Sea summer monsoon.展开更多
Effective temperature level of stream, namely stream pseudo temperature, is determined by its actual temperature and heat transfer temperature difference contribution value. Heat transfer temperature difference con-tr...Effective temperature level of stream, namely stream pseudo temperature, is determined by its actual temperature and heat transfer temperature difference contribution value. Heat transfer temperature difference con-tribution value of a stream depends on its heat transfer film coefficient, cost per unit heat transfer area, actual tem-perature, and so on. In the determination of the suitable heat transfer temperature difference contribution values of the stream, the total annual cost of multistream heat exchanger network (MSHEN) is regarded as an objective func-tion, and genetic/simulated annealing algorithm (GA/SA) is adopted for optimizing the heat transfer temperature difference contribution values of the stream. The stream pseudo temperatures are subsequently obtained. On the ba-sis of stream pseudo temperature, optimized MSHEN can be attained by the temperature-enthalpy (T-H) diagram method. This approach is characterized with fewer decision variables and higher feasibility of solutions. The calcu-lation efficiency of GA/SA can be remarkably enhanced by this approach and more probability is shown in search-ing the global optimum solution. Hence this approach is presented for solving industrial-sized MSHEN which is difficult to deal by traditional algorithm. Moreover, in the optimization of stream heat transfer temperature differ-ence contribution values, the effects of the stream temperature, the heat transfer film coefficient, and the construc-tion material of heat exchangers are considered, therefore this approach can be used to optimize and design heat exchanger network (HEN) with unequal heat transfer film coefficients and different of construction materials. The performance of the proposed approach has been demonstrated with three examples and the obtained solutions are compared with those available in literatures. The results show that the large-scale MSHEN synthesis problems can be solved to obtain good solutions with the modest computational effort.展开更多
The extreme temperature differences in fiat steel box girder of a cable-stayed bridge were studied.Firstly,by using the long-term measurement data collected by the structural health monitoring system installed on the ...The extreme temperature differences in fiat steel box girder of a cable-stayed bridge were studied.Firstly,by using the long-term measurement data collected by the structural health monitoring system installed on the Runyang Cable-stayed Bridge,the daily variations as well as seasonal ones of measured temperature differences in the box girder cross-section area were summarized.The probability distribution models of temperature differences were further established and the extreme temperature differences were estimated with a return period of 100 years.Finally,the temperature difference models in cross-section area were proposed for bridge thermal design.The results show that horizontal temperature differences in top plate and vertical temperature differences between top plate and bottom plate are considerable.All the positive and negative temperature differences can be described by the weighted sum of two Weibull distributions.The maximum positive and negative horizontal temperature differences in top plate are 10.30 ℃ and -13.80 ℃,respectively.And the maximum positive and negative vertical temperature differences between top plate and bottom plate are 17.30 ℃ and-3.70 ℃,respectively.For bridge thermal design,there are two vertical temperature difference models between top plate and bottom plate,and six horizontal temperature difference models in top plate.展开更多
The difference between ground soil and air temperature (Ts-Ta) was studied by using the data of ground and air temperature of 99 stations over the Qinghai-Xizang (Tibet) Plateau from 1960 to 2000,and its spatial d...The difference between ground soil and air temperature (Ts-Ta) was studied by using the data of ground and air temperature of 99 stations over the Qinghai-Xizang (Tibet) Plateau from 1960 to 2000,and its spatial distribution and time changing tendency have been diagnosed by principal component analysis and power spectral analysis methods. The results show that the values of (Ts-Ta) are the maximum in June and the minimum in December. The first three loading eigenvectors, which reflect the main spatially anomalous structure of (Ts-Ta) over the Qinghai-Xizang Plateau, contain the contrary changing pattern between the northwestern and the southeastern regions, the pattern response of the sea level elevation and the geography, and the pattern response of the distribution of the permafrost. There are four patterns of time evolution including the patterns of monotonous increasing or decreasing trends, the basic stability pattern and the parabola pattern with the minimum value. (Ts-Ta) has a periodic variation about 2 years. According to the spatial distribution of the third loading eigenvectors of (Ts-Ta) over the Qinghai-Xizang Plateau in cold season, the permafrost response region and the seasonal frozen ground response region are identified.展开更多
Calanus sinicus,the dominant copepod in the Yellow Sea,develops a large oil sac in late spring to prepare for over-summering in the Yellow Sea Cold Water Mass(YSCWM).The lipid accumulation mechanism for the initiation...Calanus sinicus,the dominant copepod in the Yellow Sea,develops a large oil sac in late spring to prepare for over-summering in the Yellow Sea Cold Water Mass(YSCWM).The lipid accumulation mechanism for the initiation of over-summering is unknown.Here,we cultured C3 copepodites at four constant temperatures(10,13,16,and 19℃) and at three temperature regimes that mimicked the temperature variations experienced during diurnal vertical migration(10-13℃,10-16℃,and 10-19℃) for 18 days to explore the effects of temperature differences on copepod development and lipid accumulation.C.sinicus stored more lipid at low than at high temperatures.A diurnal temperature difference(10-16℃ and 10-19℃)promoted greater lipid accumulation(1.9-2.1 times) than a constant temperature of either 16℃ or 19℃,by reducing the energy cost at colder temperatures and lengthening copepodite development.Thereafter,the lipid reserve supported gonad development after final molting.Only one male developed in these experiments.This highly female-skewed sex ratio may have been the result of the monotonous microalgae diet fed to the copepodites.This study provides the first evidence that diurnal temperature differences may promote lipid accumulation in C.sinicus,and provides a foundation for future investigations into the mechanisms involved in over-summering in the YSCWM.展开更多
Temperature difference control(TDC)schemes can clearly suppress the adverse influence of pressure variations on product quality control of various distillation columns(DCs)by employing temperature differences(TDs)betw...Temperature difference control(TDC)schemes can clearly suppress the adverse influence of pressure variations on product quality control of various distillation columns(DCs)by employing temperature differences(TDs)between the sensitive stage temperature(T_(S))and reference stage temperature(T_(R)),i.e.,T_(S)-T_(R),to infer the controlled product qualities.However,because the TDC scheme has failed to specially take the corresponding relationship between the TD employed in each control loop and the controlled product quality into account,it may suffer from relatively large steady-state errors in the controlled product qualities.To address this problem,an enhanced TDC(ETDC)scheme is proposed in the current article,in which an enhanced TD(ETD),i.e.,T_(S)-α×T_(R),is employed to replace the conventional TD for each control loop.While the locations of the sensitive and reference stages of the ETD are respectively determined according to sensitivity analysis and SVD analysis,the adjusted coefficientαis set to be the ratio between the averaged absolute variation magnitudes(AAVMs)of the T_(S)and T_(R)so that the relationship between the T_(S)and T_(R)can be appropriately coordinated.With reference to the operations of three different distillation systems,i.e.,one conventional DC distilling an ethanol(E)/butanol(B)binary mixture,one conventional DC distilling an E/propanol(P)/B ternary mixture,and one dividing-wall distillation column distilling an E/P/B ternary mixture,the performance of the ETDC scheme is assessed by compared with the conventional TDC scheme and the double TD control(DTDC)scheme.The dynamic simulation results show that the ETDC scheme is better than the conventional TDC scheme with reduced steady-state errors in the controlled product qualities and improved dynamic responses,and is comparable with the DTDC scheme despite the less temperature measurements are employed.展开更多
Heat stress seriously affects wheat production in many regions of the world. At present, heat tolerance research remains one of the least understood fields in wheat genetics and breeding and there is a lack of effecti...Heat stress seriously affects wheat production in many regions of the world. At present, heat tolerance research remains one of the least understood fields in wheat genetics and breeding and there is a lack of effective methods to quantify heat stress and heat tolerance in different wheat cultivars. The objective of this study was to use various wheat cultivars to evaluate stress intensity(δ) and a new method for quantification of heat tolerance and compare this technique with three other currently utilized methods. This new parameter for heat tolerance quantification is referred to as the heat tolerance index(HTI) and is an indicator of both yield potential and yield stability. Heat treatments were applied in a controlled setting when anthesis had been reached for 80% of the wheat. The stress intensity evaluation indicated heat shock was the main factor associated with kernel weight reduction while grain yield reduction was mainly associated with chronic high temperature. The methods evaluation showed that a temperature difference of 5°C from natural temperatures was a suitable heat treatment to compare to the untreated controls. HTI was positively correlated with yield under heat stress(r=0.8657, δ=0.15, in 2009–2010; r=0.8418, δ=0.20, in 2010–2011; P<0.01), and negatively correlated with yield reduction rate(r=–0.8344, in 2009–2010; r=–0.7158, in 2010–2011; P<0.01). The results of this study validated the use of HTI and temperature difference control for quantifying wheat heat tolerance that included the yield potential and the stability of different wheat cultivars under heat stress. Additionally, 10 wheat cultivars showed high HTI and should be further tested for their heat confirming characteristics for use in wheat heat tolerance breeding.展开更多
The relationship between the factor of temperature difference of the near-surface layer(T_(1000 hPa)-T_(2m))and sea fog is analyzed using the NCEP reanalysis with a horizontal resolution of l°xl°(2000 to 201...The relationship between the factor of temperature difference of the near-surface layer(T_(1000 hPa)-T_(2m))and sea fog is analyzed using the NCEP reanalysis with a horizontal resolution of l°xl°(2000 to 2011) and the station observations(2010 to 2011).The element is treated as the prediction variable factor in the GRAPES model and used to improve the regional prediction of sea fog on Guangdong coastland.(1) The relationship between this factor and the occurrence of sea fog is explicit:When the sea fog happens,the value of this factor is always large in some specific periods,and the negative value of this factor decreases significantly or turns positive,suggesting the enhancement of warm and moist advection of air flow near the surface,which favors the development of sea fog.(2) The transportation of warm and moist advection over Guangdong coastland is featured by some stages and the jumping among these states.It also gets stronger over time.Meanwhile,the northward propagation of warm and moist advection is quite consistent with the northward advancing of sea fog from south to north along the coastland of China.(3) The GRAPES model can well simulate and realize the factor of near-surface temperature difference.Besides,the accuracy of regional prediction of marine fog,the relevant threat score and Heidke skill score are all improved when the factor is involved.展开更多
文摘We have studied numerically a simple crack growth model in a two-dimensional triangular lattice of bonds and nodes which incorporates the surface of a growing crack bond-breaking probability P-i similar to exp{(-V-i+E(i))phi(T)}, where E(i) is elastic energy stored in the i-th bond. Different energy temperature factors phi(T) are employed during crack formation and propagation process with a uniform dilation strain case and a shear case and with periodic boundary condition in the horizontal direction. Our results show that the patterns of the cracks generated are fractal structure and the effective fractal dimensionalities decrease with the increase of the temperature factor phi(T)(the absolute temperature T decreasing). In the paper we also discuss the relation between the effective fractal dimension D-eff (the radius R(g) of gyration) and the fractal dimensions D (the radius R of circular), and also give their modification values Omega about two kinds of methods in the lattice model.
文摘The densification and the fractal dimensions of carbon-nickel films annealed at different temperatures 300, 500, 800, and 1000℃ with emphasis on porosity evaluation are investigated. For this purpose, the refractive index of films is determined from transmittance spectra. Three different regimes are identified, T 〈 500℃, 500℃ 〈 T 〈 800℃ and T 〉 800℃. The Rutherford baekscattering spectra show that with increasing the annealing temperature, the concentration of nickel atoms into films decreases. It is shown that the effect of annealing temperatures for increasing films densification at T 〈 500℃ and T 〉 800℃ is greater than the effect of nickel concentrations. It is observed that the effect of decreasing nickel atoms into films at 500℃ 〈 T 〈 800℃ strongly causes improving porosity and decreasing densification. The fractal dimensions of carbon-nickel films annealed from 300 to 500℃ are increased, while from 500 to 1000℃ these characteristics are decreased. It can be seen that at 800℃, films have maximum values of porosity and roughness.
基金Supported by the National Basic Research Program of China under Grant Nos 2010CB832902 and 91026002the National Natural Science Foundation of China under Grant No U1232121
文摘Modified novel high silicon steel (MNHS, a newly developed reduced-activation martensitic alloy) and commercial alloy Tgl are implanted with 200 keV He2+ ions to a dose of 5 × 1020 ions/m2 at 300, 450 and 560~C. Transmission electron microscopy (TEM) is used to characterize the size and morphology of He bubbles. With the increase of the implantation temperature, TEM observations indicate that bubbles increase in size and the proportion of 'brick shaped' cuboid bubbles increases while the proportion of polyhedral bubbles decreases in both the steel samples. For the samples implanted at the same temperature, the average size of He bubbles in MNHS is smaller than that in T91. This might be due to the abundance of boundaries and precipitates in MNHS, which provide additional sites for the trapping of He atoms, thus reduce the susceptibility of MNHS to He embrittlement.
文摘The viscosities, η, and ultrasonic speeds, u, of pure benzene, triethylamine, (TEA) tributylamine, (TBA), and those of their binary mixtures, with benzene as common component, covering the whole composition range have been measured at 278.15 K, 283.15 K, 288.15 K, 293.15 K, 298.15 K, 303.15 K, 308.15 K, 313.15 K, and 318.15 K. From the experimental data the deviations in viscosity, △η, deviations in Gibbs free energy, AG, deviations in ultrasonic speed, △u, deviations in entropies, △S^*, and deviations in enthalpies, △H^*, of activation of viscous flow have been determined. The sign and magnitude of these parameters were found to be sensitive towards interactions prevailing in the studied systems. Further, the excess molar volumes, VE, were calculated using data for the binary mixtures. Moreover, theoretical values of viscosities and ultrasonic speeds of the binary mixtures were calculated using different empirical relations and theories. The results were in experimental and theoretical values. discussed in terms of average deviations (AD)
文摘It is theoretically investigated the generation of higher harmonics of two-dimensional and three-dimensional terahertz electromagnetic beams in nonlinear crystals. The attention is paid to crystalline paraelectrics like SrTiO<sub>3</sub> under the temperatures 60 - 200 K, these crystals possess the cubic nonlinearity. The bias electric field is applied to provide the dominating quadratic nonlinearity. The initial focusing of the beams not only increases the efficiency of generation of higher harmonics, but alto makes possible to select maxima of different higher harmonics at some distances from the input. At lower temperatures the nonlinearity behaves at smaller input amplitudes, whereas at higher temperatures the harmonic generation can be observed at higher frequencies up to 1.5 THz. In three-dimensional beams the peak amplitudes of higher harmonics can be bigger than in two-dimensional beams, but the ratios of these peak values to the maximum values of the focused first harmonic are smaller than in two-dimensional beams.
基金Supported by the National Natural Science Foundation of China under Grant No 61334001the National Key Research and Development Program of China under Grant Nos 2016YFB0400600,2016YFB0400601 and 2016YFB0400100+1 种基金the National Science Foundation for Young Scientists of China under Grant No 21405076the Fund for Less Developed Regions of the National Natural Science Foundation of China under Grant No 11364034
文摘InGaN-based green light-emitting diodes (LEDs) with different growth temperatures of superlattice grown on Si (111) substrates are investigated by temperature-dependent electroluminescence between 100 K and 350K. It is observed that with the decrease of the growth temperature of the superlattice from 895℃ to 855℃, the forward voltage decreases, especially at low temperature. We presume that this is due to the existence of the larger average size of V-shaped pits, which is determined by secondary ion mass spectrometer measurements. Meanwhile, the sample with higher growth temperature of superlattice shows a severer efficiency droop at cryogenic temperatures (about 100 K-150 K). Electron overflow into p-GaN is considered to be the cause of such phenomena, which is relevant to the poorer hole injection into multiple quantum wells and the more reduced effective active volume in the active region.
基金the financial support from National Natural Science Foundation of China (21878011)。
文摘The mass and thermal coupling makes the control of the reactive double dividing-wall distillation column(R-DDWDC) an especially challenging issue with a highly interactive nature. With reference to the separation of an ideal endothermic quaternary reversible reaction with the most unfavorable ranking of relative volatilities(A + B ■ C + D with α_(A)>α_(C)>α_(D)>α_(B)), the operation rationality of the R-DDWDC is studied in this contribution. The four-point single temperature control system leads to great steady-state discrepancies in the compositions of products C and D and the reason stems essentially from the failure in keeping strictly the stoichiometric ratio between reactants A and B. A temperature plus temperature cascade control scheme is then employed to reinforce the stoichiometric ratio control and helps to secure a substantial abatement in the steady-state discrepancies. A temperature difference plus temperature cascade control scheme is finally synthesized and leads even to better performance than the most effective double temperature difference control scheme. These outcomes reveal not only the operation feasibility of the R-DDWDC but also the general significance of the proposed temperature difference plus temperature cascade control scheme to the inferential control of any other complicated distillation columns.
文摘A theoretical study based on the Penalty factor(PF)method by Cavallini et al.is conducted to show that the pressure drop occurring in a wire-on-tube heat exchanger can be converted into a temperature difference for two types of refrigerants R-134a and R-600a typically used for charging refrigerators and freezers.The following conditions are considered:stratified or stratified-wavyflow condensation occurring inside the smooth tube of a wire-on-tube condenser with diameter 3.25,4.83,and 6.299 mm,condensation temperatures 35℃,45℃,and 54.4℃ and cover refrigerant massflow rate spanning the interval from 1 to 7 kg/hr.The results show that the PF variation is not linear with vapor quality and attains a maximum when the vapor quality is 0.2 and 0.18 for the R-134a and R-600a refrigerants,respectively.The PF increases with the refrigerant massflow rate if the inner diameter and saturation temperature constant,and it decreases on increasing the inner diameter to 6.299 mm for constant refrigerant massflow rate and saturation temperature.The PF for R-600a is higher than that for R-134a due to the lower saturation pressure in thefirst case.Furthermore,a stratifiedflow produces higher PF in comparison to the annularflow due to the effect of the surface tension.
基金funded by the JASTIP-RISH 2022(S-08)RIIM 2023 Batch 4,National Research and Innovation Agency(BRIN)Indonesia.
文摘Tannins are capable of producing natural dyes with antioxidant and antibacterial propertis,while synthetic dyes are commonly used in the textile industry,causing environmental issues like water pollution.This research aims to utilize waste tannins as natural dyes as an alternative to synthetic dyes.This study examined the effect of the extraction method on tannin properties such as phenolic content,antioxidants,and antibacterial activity.In addition,Pyrolysis Gas Chromatography‒Mass Spectrometry(Py-GCMS)analysis was used to identify the effect of extraction temperature on the chemical elucidation of tannin.The effect of tannin concentration was evaluated against four bacteria that are usually found on human skin:Staphylococcus epidermidis,Bacillus subtilis,Propionibacterium acnes,and Staphylococcus aureus.Extraction temperature significantly influences the chemical composition of tannin,which leads to different antioxidant properties.The maximum antibacterial properties of tannin were obtained at 90℃with the inhibition zone in the range of 0.9–1.0 mm against four bacteria,tannin yield of 26.59%,Gallic Acid Equivalents or total phenolic content(GAE)of 40.30 mg/g,and Radical Scavenging Activity or antioxidant activity(RSA)of 89.88%.Moreover,the concentration of tannin was significantly linear with its antibacterial properties.Tannin was successfully applied to the textile by using alum as a mordanting agent to create an antibacterial textile.The textile’s bacterial structure damage was analyzed under Field Emission Scanning Electron Microscopy(FESEM).After 50 washings,tannin-textiles with alum-modified properties remained stable compared to those without alum,with S.aureus and S.epidermidis being the most vulnerable bacteria,as confirmed by FESEM images.Hence,tannin is a feasible alternative to harmful and nondegradable synthetic dyes and antibacterial agents.
基金We acknowledge the funding support from the National Natural Science Foundation of China(Grant No.42271148).
文摘Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors of frozen rock is evaluated by testing the tension fracture toughness(KIC)of frozen rock at different temperatures(i.e.-20℃,-15℃,-12℃,-10℃,-8℃,-6℃,-4℃,-2℃,and 0℃).Acoustic emission(AE)and digital image correlation(DIC)methods are utilized to analyze the microcrack propagation during fracturing.The melting of pore ice is measured using nuclear magnetic resonance(NMR)method.The results indicate that:(1)The KIC of frozen rock decreases moderately between-20℃ and-4℃,and rapidly between-4℃ and 0℃.(2)At-20℃ to-4℃,the fracturing process,deduced from the DIC results at the notch tip,exhibits three stages:elastic deformation,microcrack propagation and microcrack coalescence.However,at-4℃e0℃,only the latter two stages are observed.(3)At-4℃e0℃,the AE activities during fracturing are less than that at-20℃ to-4℃,while more small events are reported.(4)The NMR results demonstrate a reverse variation trend in pore ice content with increasing temperature,that is,a moderate decrease is followed by a sharp decrease and-4℃ is exactly the critical temperature.Next,we interpret the thawing-induced softening effect by linking the evolution in microscopic structure of frozen rock with its macroscopic fracture behaviors as follow:from-20℃ to-4℃,the thickening of the unfrozen water film diminishes the cementation strength between ice and rock skeleton,leading to the decrease in fracture parameters.From-4℃ to 0℃,the cementation effect of ice almost vanishes,and the filling effect of pore ice is reduced significantly,which facilitates microcrack propagation and thus the easier fracture of frozen rocks.
基金supported by the National Natural Science Foundation of China(Nos.52225403,U2013603,52434004,and 52404365)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2019ZT08G315)+2 种基金the Shenzhen National Science Fund for Distinguished Young Scholars(No.RCJC20210706091948015)the National Key Research and Development Program of China(2023YFF0615404)the Scientific Instrument Developing Project of Shenzhen University。
文摘The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and society.Technological exploration and research in the field of deep space science,especially lunar-based exploration,is a scientific strategy that has been pursued in China and worldwide.Drilling and sampling are key to accurate exploration of the desirable characteristics of deep lunar resources.In this study,an in-situ condition preserved coring(ICP-Coring)and analysis system,which can be used to test drilling tools and develop effective sampling strategies,was designed.The key features of the system include:(1)capability to replicate the extreme temperature fluctuations of the lunar environment(-185 to 200℃)with intelligent temperature control;(2)ability to maintain a vacuum environment at a scale of 10^(-3) Pa,both under unloaded conditions within Ф580 mm×1000 mm test chamber,and under loaded conditions using Ф400 mm×800 mm lunar rock simulant;(3)application of axial pressures up to 4 MPa and confining pressures up to 3.5 MPa;(4)sample rotation at any angle with a maximum sampling length of 800 mm;and(5)multiple modes of rotary-percussive drilling,controlled by penetration speed and weight on bit(WOB).Experimental studies on the drilling characteristics in the lunar rock simulant-loaded state under different drill bit-percussive-vacuum environment configurations were conducted.The results show that the outgassing rate of the lunar soil simulant is greater than that of the lunar rock simulant and that a low-temperature environment contributes to a reduced vacuum of the lunar-based simulated environment.The rotary-percussive drilling method effectively shortens the sampling time.With increasing sampling depth,the temperature rise of the drilling tools tends to rapidly increase,followed by slow growth or steady fluctuations.The temperature rise energy accumulation of the drill bits under vacuum is more significant than that under atmospheric pressure,approximately 1.47 times higher.The real-time monitored drilling pressure,penetration speed and rotary torque during drilling serve as parameters for discriminating the drilling status.The results of this research can provide a scientific basis for returning samples from lunar rock in extreme lunar-based environments.
基金This study was supported by the project of the National Natural Science Foundation of China"Response of inter-decadal variability of South China Sea summer monsoon to the whole globe variability”under contract number 9021l010“Interannual to interdecadal variability in circulation in the tropical Pa-cific Ocean”under contract number 40136010.
文摘The annual, interannual and inter-decadal variability of convection intensity of South China Sea (SCS) summer monsoon and air-sea temperature difference in the tropical ocean is analyzed, and their relationship is discussed using two data sets of 48-a SODA (simple ocean data assimilation) and NCEP/NCAR. Analyses show that in wintertime Indian Ocean (WIO), springtime central tropical Pacific (SCTP) and summertime South China Sea-West Pacific (SSCSWP), air-sea temperature difference is significantly associated with the convection intensity of South China Sea summer monsoon. Correlation of the inter-decadal time scale (above 10 a) is higher and more stable. There is inter-decadal variability of correlation in scales less than 10 a and it is related with the air-sea temperature difference itself for corresponding waters. The inter-decadal variability of the convection intensity during the South China Sea summer monsoon is closely related to the inter-decadal variability of the general circulation of the atmosphere. Since the late period of the 1970s, in the lower troposphere, the cross-equatorial flow from the Southern Hemisphere has intensified. At the upper troposphere layer, the South Asian high and cross-equatorial flow from the Northern Hemisphere has intensified at the same time. Then the monsoon cell has also strengthened and resulted in the reinforcing of the convection of South China Sea summer monsoon.
基金Supported by the Deutsche Forschungsgemeinschaft (DFG No.RO 294/9).
文摘Effective temperature level of stream, namely stream pseudo temperature, is determined by its actual temperature and heat transfer temperature difference contribution value. Heat transfer temperature difference con-tribution value of a stream depends on its heat transfer film coefficient, cost per unit heat transfer area, actual tem-perature, and so on. In the determination of the suitable heat transfer temperature difference contribution values of the stream, the total annual cost of multistream heat exchanger network (MSHEN) is regarded as an objective func-tion, and genetic/simulated annealing algorithm (GA/SA) is adopted for optimizing the heat transfer temperature difference contribution values of the stream. The stream pseudo temperatures are subsequently obtained. On the ba-sis of stream pseudo temperature, optimized MSHEN can be attained by the temperature-enthalpy (T-H) diagram method. This approach is characterized with fewer decision variables and higher feasibility of solutions. The calcu-lation efficiency of GA/SA can be remarkably enhanced by this approach and more probability is shown in search-ing the global optimum solution. Hence this approach is presented for solving industrial-sized MSHEN which is difficult to deal by traditional algorithm. Moreover, in the optimization of stream heat transfer temperature differ-ence contribution values, the effects of the stream temperature, the heat transfer film coefficient, and the construc-tion material of heat exchangers are considered, therefore this approach can be used to optimize and design heat exchanger network (HEN) with unequal heat transfer film coefficients and different of construction materials. The performance of the proposed approach has been demonstrated with three examples and the obtained solutions are compared with those available in literatures. The results show that the large-scale MSHEN synthesis problems can be solved to obtain good solutions with the modest computational effort.
基金Project(51178100)supported by the National Natural Science Foundation of ChinaProject(1105007001)supported by the Foundation of the Priority Academic Development Program of Higher Education Institute of Jiangsu Province,ChinaProject(3205001205)supported by the Teaching and Research Foundation for Excellent Young Teachers of Southeast University,China
文摘The extreme temperature differences in fiat steel box girder of a cable-stayed bridge were studied.Firstly,by using the long-term measurement data collected by the structural health monitoring system installed on the Runyang Cable-stayed Bridge,the daily variations as well as seasonal ones of measured temperature differences in the box girder cross-section area were summarized.The probability distribution models of temperature differences were further established and the extreme temperature differences were estimated with a return period of 100 years.Finally,the temperature difference models in cross-section area were proposed for bridge thermal design.The results show that horizontal temperature differences in top plate and vertical temperature differences between top plate and bottom plate are considerable.All the positive and negative temperature differences can be described by the weighted sum of two Weibull distributions.The maximum positive and negative horizontal temperature differences in top plate are 10.30 ℃ and -13.80 ℃,respectively.And the maximum positive and negative vertical temperature differences between top plate and bottom plate are 17.30 ℃ and-3.70 ℃,respectively.For bridge thermal design,there are two vertical temperature difference models between top plate and bottom plate,and six horizontal temperature difference models in top plate.
基金Foundation: National Natural Science Foundation of China, No.40471026 National Fund for "Western Major Plan" Broadly Item, No.90302006+1 种基金 Knowledge Innovation Project of CAS, No.220014-03 The National Basic Research Program (973 Program), No.2005CB422003
文摘The difference between ground soil and air temperature (Ts-Ta) was studied by using the data of ground and air temperature of 99 stations over the Qinghai-Xizang (Tibet) Plateau from 1960 to 2000,and its spatial distribution and time changing tendency have been diagnosed by principal component analysis and power spectral analysis methods. The results show that the values of (Ts-Ta) are the maximum in June and the minimum in December. The first three loading eigenvectors, which reflect the main spatially anomalous structure of (Ts-Ta) over the Qinghai-Xizang Plateau, contain the contrary changing pattern between the northwestern and the southeastern regions, the pattern response of the sea level elevation and the geography, and the pattern response of the distribution of the permafrost. There are four patterns of time evolution including the patterns of monotonous increasing or decreasing trends, the basic stability pattern and the parabola pattern with the minimum value. (Ts-Ta) has a periodic variation about 2 years. According to the spatial distribution of the third loading eigenvectors of (Ts-Ta) over the Qinghai-Xizang Plateau in cold season, the permafrost response region and the seasonal frozen ground response region are identified.
基金Supported by the State Key Program of National Natural Science Foundation of China(No.41230963)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11020305)the NSFC-Shandong Joint Fund for Marine Ecology and Environmental Sciences(No.U1406403)
文摘Calanus sinicus,the dominant copepod in the Yellow Sea,develops a large oil sac in late spring to prepare for over-summering in the Yellow Sea Cold Water Mass(YSCWM).The lipid accumulation mechanism for the initiation of over-summering is unknown.Here,we cultured C3 copepodites at four constant temperatures(10,13,16,and 19℃) and at three temperature regimes that mimicked the temperature variations experienced during diurnal vertical migration(10-13℃,10-16℃,and 10-19℃) for 18 days to explore the effects of temperature differences on copepod development and lipid accumulation.C.sinicus stored more lipid at low than at high temperatures.A diurnal temperature difference(10-16℃ and 10-19℃)promoted greater lipid accumulation(1.9-2.1 times) than a constant temperature of either 16℃ or 19℃,by reducing the energy cost at colder temperatures and lengthening copepodite development.Thereafter,the lipid reserve supported gonad development after final molting.Only one male developed in these experiments.This highly female-skewed sex ratio may have been the result of the monotonous microalgae diet fed to the copepodites.This study provides the first evidence that diurnal temperature differences may promote lipid accumulation in C.sinicus,and provides a foundation for future investigations into the mechanisms involved in over-summering in the YSCWM.
基金China Postdoctoral Science Foundation(No.2019M650453)Fundamental Research Funds for the Central Universities(ZY1930)+1 种基金National Natural Science Foundation of China(21808007,21878011,21676011,and 21576014)Open Foundation of State Key Laboratory of Chemical Engineering(No.SKL-ChE-18B01)。
文摘Temperature difference control(TDC)schemes can clearly suppress the adverse influence of pressure variations on product quality control of various distillation columns(DCs)by employing temperature differences(TDs)between the sensitive stage temperature(T_(S))and reference stage temperature(T_(R)),i.e.,T_(S)-T_(R),to infer the controlled product qualities.However,because the TDC scheme has failed to specially take the corresponding relationship between the TD employed in each control loop and the controlled product quality into account,it may suffer from relatively large steady-state errors in the controlled product qualities.To address this problem,an enhanced TDC(ETDC)scheme is proposed in the current article,in which an enhanced TD(ETD),i.e.,T_(S)-α×T_(R),is employed to replace the conventional TD for each control loop.While the locations of the sensitive and reference stages of the ETD are respectively determined according to sensitivity analysis and SVD analysis,the adjusted coefficientαis set to be the ratio between the averaged absolute variation magnitudes(AAVMs)of the T_(S)and T_(R)so that the relationship between the T_(S)and T_(R)can be appropriately coordinated.With reference to the operations of three different distillation systems,i.e.,one conventional DC distilling an ethanol(E)/butanol(B)binary mixture,one conventional DC distilling an E/propanol(P)/B ternary mixture,and one dividing-wall distillation column distilling an E/P/B ternary mixture,the performance of the ETDC scheme is assessed by compared with the conventional TDC scheme and the double TD control(DTDC)scheme.The dynamic simulation results show that the ETDC scheme is better than the conventional TDC scheme with reduced steady-state errors in the controlled product qualities and improved dynamic responses,and is comparable with the DTDC scheme despite the less temperature measurements are employed.
基金partially supported by the Generation Challenge Program,CIMMYT(International Maize and Wheat Improvement Center)(GCP,G7010.02.01)the earmarked fund for China Agriculture Research System(CARS-3-2-3)the National Key Technology R&D Program of China(2016YFD0100502,2016YFD0300407)
文摘Heat stress seriously affects wheat production in many regions of the world. At present, heat tolerance research remains one of the least understood fields in wheat genetics and breeding and there is a lack of effective methods to quantify heat stress and heat tolerance in different wheat cultivars. The objective of this study was to use various wheat cultivars to evaluate stress intensity(δ) and a new method for quantification of heat tolerance and compare this technique with three other currently utilized methods. This new parameter for heat tolerance quantification is referred to as the heat tolerance index(HTI) and is an indicator of both yield potential and yield stability. Heat treatments were applied in a controlled setting when anthesis had been reached for 80% of the wheat. The stress intensity evaluation indicated heat shock was the main factor associated with kernel weight reduction while grain yield reduction was mainly associated with chronic high temperature. The methods evaluation showed that a temperature difference of 5°C from natural temperatures was a suitable heat treatment to compare to the untreated controls. HTI was positively correlated with yield under heat stress(r=0.8657, δ=0.15, in 2009–2010; r=0.8418, δ=0.20, in 2010–2011; P<0.01), and negatively correlated with yield reduction rate(r=–0.8344, in 2009–2010; r=–0.7158, in 2010–2011; P<0.01). The results of this study validated the use of HTI and temperature difference control for quantifying wheat heat tolerance that included the yield potential and the stability of different wheat cultivars under heat stress. Additionally, 10 wheat cultivars showed high HTI and should be further tested for their heat confirming characteristics for use in wheat heat tolerance breeding.
基金Chinese Special Scientific Research Project for Public Interest(GYHY200906008)Natural Science Foundation of China(41275025)+2 种基金Guangdong Science and Technology Plan Project(2012A061400012)Meteorological Project from Guangdong Meteorological Bureau(201003)Research on Pre-warning and Forecasting Techniques for Marine Meteorology from Guangdong Meteorological Bureau
文摘The relationship between the factor of temperature difference of the near-surface layer(T_(1000 hPa)-T_(2m))and sea fog is analyzed using the NCEP reanalysis with a horizontal resolution of l°xl°(2000 to 2011) and the station observations(2010 to 2011).The element is treated as the prediction variable factor in the GRAPES model and used to improve the regional prediction of sea fog on Guangdong coastland.(1) The relationship between this factor and the occurrence of sea fog is explicit:When the sea fog happens,the value of this factor is always large in some specific periods,and the negative value of this factor decreases significantly or turns positive,suggesting the enhancement of warm and moist advection of air flow near the surface,which favors the development of sea fog.(2) The transportation of warm and moist advection over Guangdong coastland is featured by some stages and the jumping among these states.It also gets stronger over time.Meanwhile,the northward propagation of warm and moist advection is quite consistent with the northward advancing of sea fog from south to north along the coastland of China.(3) The GRAPES model can well simulate and realize the factor of near-surface temperature difference.Besides,the accuracy of regional prediction of marine fog,the relevant threat score and Heidke skill score are all improved when the factor is involved.