Using the Differential Absorption Lidar (DIAL) technique, two types of approaches, namely, reflection from retroreflector / topographic target and backscatter from atmosphere, are available for studying remotely the a...Using the Differential Absorption Lidar (DIAL) technique, two types of approaches, namely, reflection from retroreflector / topographic target and backscatter from atmosphere, are available for studying remotely the atmospheric NO, concentration. The Argon ion lidar system at the Indian Institute of Tropical Meteorology (IITM), Pune, India has been used for the measurements by following both the path-averaged and range-resolved approaches. For the former, a topographic target (hill) is used for determining path-averaged surface concentration. In the latter, spectral properties of atmospheric attenuation is used for making range-resolved measurements in the surface layer. The results of the observations collected by following both approaches are presented. The average surface NO2 concentration was found to vary between 0.01 and 0.105 ppm and the range-resolved measurements exhibited higher values suggesting treatment of the lidar data for scattering and extinction effects due to atmospheric aerosols and air molecules, and atmospheric turbulence. Certain modifications that are suggested to the experimental set-up, data acquisition and analysis to improve the measurements are briefly described.展开更多
In this paper, the effect of scintillation on system SNR is discussed. Atmospheric scintillation is described and log amplitude variance in slant path is given. In addition, the simulations of system SNR at different ...In this paper, the effect of scintillation on system SNR is discussed. Atmospheric scintillation is described and log amplitude variance in slant path is given. In addition, the simulations of system SNR at different propagation path and different height are obtained. The results from simulation show that atmospheric scintillation has an important effect on SNR of DIAL system, especially near the ground.展开更多
An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption l...An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety.展开更多
Based on Raman-shifted wavelengths of D2 and CHr pumped by third harmonic of Nd:YAG laser, a differential absorption lidar was presented in this paper and had been constructed for probing environmental NO2 concentrati...Based on Raman-shifted wavelengths of D2 and CHr pumped by third harmonic of Nd:YAG laser, a differential absorption lidar was presented in this paper and had been constructed for probing environmental NO2 concentration. NO2 experimental measurements were carried out at Anhui Institute of Optics and Fine Mechanics in Hefei. Some NO2 measurement results were given and discussed.展开更多
The long-path differential optical absorption spectroscopy (LP-DOAS) technique was developed to mea- sure nighttime atmospheric nitrate radical (NO3) concentrations. An optimized retrieval method, resulting in a s...The long-path differential optical absorption spectroscopy (LP-DOAS) technique was developed to mea- sure nighttime atmospheric nitrate radical (NO3) concentrations. An optimized retrieval method, resulting in a small residual structure and low detection limits, was developed to retrieve NO3. The time series of the NO3 concentration were collected from 17 to 24 March, 2006, where a nighttime average value of 15.8 ppt was observed. The interfering factors and errors are also discussed. These results indicate that the DOAS technique provides an essential tool for the quantification of NO3 concentration and in the study of its effects upon nighttime chemistry.展开更多
An airborne multi-axis differential optical absorption spectroscopic (AMAX-DOAS) instrument was developed and applied to measure tropospheric NO2 in the Pearl River Delta region in the south of China. By combining t...An airborne multi-axis differential optical absorption spectroscopic (AMAX-DOAS) instrument was developed and applied to measure tropospheric NO2 in the Pearl River Delta region in the south of China. By combining the measurements in nadir and zenith directions and analyzing the UV and visible spectral region using the DOAS method, information about tropospheric NO2 vertical columns was obtained. Strong tropospheric NO2 signals were detected when flying over heavilly polluted regions and point sources like plants. The AMAX-DOAS results were compared with ground-based MAX-DOAS observations in the southwest of Zhuhai city using the same parameters for radiative transport calculations. The difference in vertical column data between the two instruments is about 8%. Our data were also compared with those from OMI and fair agreement was obtained with a correlation coefficient R of 0.61. The difference between the two instruments can be attributed to the different spatial resolution and the temporal mismatch during the measurements.展开更多
During the measurement of atmospheric nitrate radical by long-path differential optical absorption spectroscopy, water vapor strong absorption could affect the measurement of nitrate radical and detection limits of sy...During the measurement of atmospheric nitrate radical by long-path differential optical absorption spectroscopy, water vapor strong absorption could affect the measurement of nitrate radical and detection limits of system. Under the tropospheric condition, the optical density of water vapor absorption is non-linearly dependent on column density. An effective method was developed to eliminate the effect of water vapor absorption. Reference spectra of water vapor based on the daytime atmospheric absorption spectra, when fitted together with change of cross section with water vapor column densities, gave a more accurate fitting of water vapor absorptions, thus its effect on the measurements of nitrate radical could be restricted to a minimum and detection limits of system reached 3.6 ppt. The modified method was applied during an intensive field campaign in the Pearl River Delta, China. The NO3 concentration in polluted air masses varied from 3.6 ppt to 82.5 ppt with an average level of 23.6±1.8 ppt.展开更多
It was reported on the elimination of interfering absorption of BTX. the absorption of O2 includes different absorption bands, which change differently when the partial pressure of oxygen is varied. These cause the no...It was reported on the elimination of interfering absorption of BTX. the absorption of O2 includes different absorption bands, which change differently when the partial pressure of oxygen is varied. These cause the nonlinear absorption of O2 and the observed band shape to vary with the column density of O2. The absorption ratios of molecular absorption in each of the Herzberg bands and dimer absorptions, as well as the contribution to the correction error of molecular absorption, are studied based on the characteristic of these absorption bands. The optimized way to eliminate the interfering absorption is obtained in the end and the effectiveness of using interpolation proposed by Volkamer et al. to remove O2 absorption is proved again. As to O2 and SO2, the effect of the thermal effect of characteristic spectra on the elimination error of their absorption is studied. Solutions to these problems are discussed and demonstrated together with methods to optimize the interpolation of spectra. As a sample application, differential optical absorption spectroscopy (DOAS) measurements of BTX are carried out. Results show a low detection limit and the good correlation with point instruments are achieved. All these prove the feasibility of using spectral interpolation to improve the accuracy of DOAS measurements of aromatic hydrocarbons for practical purposes.展开更多
A new indicator with temperature dependence of the NO3 loss frequency, was developed to study the contribution of NO3 to the oxidation of monoterpenes and NOx removal in the atmosphere. The new indicator arises from t...A new indicator with temperature dependence of the NO3 loss frequency, was developed to study the contribution of NO3 to the oxidation of monoterpenes and NOx removal in the atmosphere. The new indicator arises from the temperature dependence of kinetic constant. The new indicator was applied to data of observation based on differential optical absorption spectroscopy system on the outskirts of Hefei, China. According to the findings, the contribution of monoterpenes to the loss of NO3 was 70%-80%.展开更多
Measurements of atmospheric benzene and toluene were carried out continuously using dif- ferential optical absorption spectroscopy from August 7 to August 28 in Beijing during the period of vehicular restrictions. The...Measurements of atmospheric benzene and toluene were carried out continuously using dif- ferential optical absorption spectroscopy from August 7 to August 28 in Beijing during the period of vehicular restrictions. The correlations between traffic flows and totals of benzene and toluene were studied during the period of vehicular traffic restrictions from August 17 to August 20 and non-traffic restrictions on August 16 and August 21. The correlation coef- ficient was 0.8 between benzene and toluene. And the calculated daily mean value ratios of benzene to toluene were 0.43-0.50. During the period of vehicular restrictions, traffic flows were reduced about 11.8% and the levels of benzene and toluene were reduced by 11.4% and 12.8%, respectively. The vehicle emissions were recognized as the major sources for atmospheric benzene and toluene in Beijing.展开更多
With the method of differential optical absorption spectroscopy (DOAS), average concentrations of aerosol particles along light path were measured with a flashlight source in Chiba area during the period of one mont...With the method of differential optical absorption spectroscopy (DOAS), average concentrations of aerosol particles along light path were measured with a flashlight source in Chiba area during the period of one month. The optical thickness at 550 nm is compared with the concentration of ground-measured suspended particulate matter (SPM). Good correlations are found between the DOAS and SPM data, leading to the determination of the aerosol mass extinction efficiency (MEE) to be possible in the lower troposphere. The average MEE value is about 7.6m^2.g^-1 , and the parameter exhibits a good correlation with the particle size as determined from the wavelength dependence of the DOAS signal intensity.展开更多
A field-based Intercomparison study of a commercial Differential Optical Absorption Spectroscopy (DOAS) instrument (OPSIS AB, Sweden) and different point-sample monitoring techniques (PM, based on an air monitoring st...A field-based Intercomparison study of a commercial Differential Optical Absorption Spectroscopy (DOAS) instrument (OPSIS AB, Sweden) and different point-sample monitoring techniques (PM, based on an air monitoring station, an air monitoring vehicle, and various chemical methods) was conducted in Beijing from October 1999 to January 2000. The mixing ratios of six trace gases including NO, NO2, SO2, O3, benzene, and toluene were monitored continuously during the four months. A good agreement between the DOAS and PM data was found for NO2 and SO2. However, the concentrations of benzene, toluene, and NO obtained by DOAS were significantly lower than those measured by the point monitors. The ozone levels monitored by the DOAS were generally higher than those measured by point monitors. These results may be attributed to a strong vertical gradient of the NO-O3-NO2 system and of the aromatics at the measurement site. Since the exact data evaluation algorithm is not revealed by the manufacturer of the DOAS system, the error in the DOAS analysis can also not be excluded.展开更多
The excellent response characteristics and detection sensitivity with much lower operational cost and the capability to discriminate between the isomer of some monoaromatic hydrocarbons (MAHCs) make differential opt...The excellent response characteristics and detection sensitivity with much lower operational cost and the capability to discriminate between the isomer of some monoaromatic hydrocarbons (MAHCs) make differential optical absorption spectroscopy (DOAS) a powerful tool to trace concentration variation of MAHCs. But due to the similarity in chemical structure, those MAHCs have the similar overlapped characteristic absorption structures, which make the selection of instrumental parameter critical to the accurate detection of MAHCs. Firstly, the spectral resolution used in DOAS system determines the nonlinear absorption of O2 and the mass dependence of characteristic absorption structure; thereby it determines the effect of elimination error of O2 absorption in the atmospheric spectra for the detection of MAHCs. Secondly, spectral resolution determines the differential absorption characteristics of twelve MAHCs representing major constituents in technical solvents used in the automobile industry and the interference of spectral overlapping. Thirdly, the spectral resolution determines the sensitivity, time resolution and linear range. So the spectral resolution range with the best ratio of signal to noise is used to determine the most suitable spectral resolution range, as well as the spectral resolution range that ensure the characteristic absorption structure of MAHCs and the minimization of O2 absorption interference. Finally, 0.15-0.16 nm (FWHM: full width at half maximum) is assumed to be closest to the optimum spectral resolution and it is confirmed by the results of practical measurement of MAHCs by DOAS.展开更多
Observation of nighttime nitrate radical (NO3) was performed by using long path differential optical absorption spectroscopy (LP- DOAS), on the outskirts of Hefei, China. The time series of NO3 and supporting para...Observation of nighttime nitrate radical (NO3) was performed by using long path differential optical absorption spectroscopy (LP- DOAS), on the outskirts of Hefei, China. The time series of NO3 and supporting parameters were simultaneously measured for a week (31 May-7 June 2006). The results indicated that the average concentration of NO3 was 15.6 pptv with an average lifetimes of 96 s, whereas, NO3 production rates varied from 8×10^2/(cm^3·s) to 2.98×10^7/(cm^3·s). Furthermore, the calculated N2O5 concentration averaged at 380 pptv. Analysis of data indicated that direct sinks were probably dominating the NO3 loss process during this campaign. The results were compared with other campaigns in the boundary layer.展开更多
Continuous data of aerosol optical thickness monitored using differential optical absorption spectroscopy (DOAS) are correlated with the concentration of ground-measured suspended particulate matter (SPM). A high ...Continuous data of aerosol optical thickness monitored using differential optical absorption spectroscopy (DOAS) are correlated with the concentration of ground-measured suspended particulate matter (SPM). A high correlation is found between the DOAS and the ground SPM data, making it possible to calculate the mass extinction efficiency of the aerosols in the atmosphere. It is found that the value of mean mass extinction efficiency (MEE) varies over a range of 2.6-13.7 m^2 g^-1, with smaller and larger values occurring for size distributions dominated by coarse and fine particles, respectively.展开更多
Obtaining the vertical distribution profile of trace gas is of great significance for studying the diffusion procedure of air pollution.In this article,a look-up table method based on multi-axis differential optical a...Obtaining the vertical distribution profile of trace gas is of great significance for studying the diffusion procedure of air pollution.In this article,a look-up table method based on multi-axis differential optical absorption spectroscopy(MAX-DOAS)technology is established for retrieving the tropospheric NO_(2) vertical distribution profiles.This method retrieves the aerosol extinction profiles with minimum cost function.Then,the aerosol extinction profiles and the atmospheric radiation transfer model(RTM)are employed to establish the look-up table for retrieving the NO_(2) vertical column densities(VCDs)and profiles.The measured NO_(2) differential slant column densities(DSCDs)are compared with the NO_(2) DSCDs simulated by the atmospheric RTM,and the NO_(2) VCDs,the weight factor of NO_(2) in the boundary layer,and the boundary layer height are obtained by the minimization process.The look-up table is established to retrieve NO_(2) VCDs based on MAX-DOAS measurements in Huaibei area,and the results are compared with the data from Copernicus Atmospheric Monitoring Service(CAMS)model.It is found that there are nearly consistent and the correlation coefficient R2 is more than 0.86.The results show that this technology provides a more convenient and accurate retrieval method for the stereoscopic monitoring of atmospheric environment.展开更多
The Ring effect refers to the filling in of Fraunhofer lines, which is mainly attributed to the rotational Raman scattering of solar spectra by N2 and O2 molecules in the atmosphere. The Ring effect is one of the most...The Ring effect refers to the filling in of Fraunhofer lines, which is mainly attributed to the rotational Raman scattering of solar spectra by N2 and O2 molecules in the atmosphere. The Ring effect is one of the most significant factors affecting the accuracy of retrieving concentrations of atmospheric trace gases, such as NO2 and SO2, from satellite observations through differential optical absorption spectroscopy. First in this study, the solar spectrum measured by the Ozone Monitoring Instrument onboard NASA Aura is convolved with the rotational Raman cross section of the atmosphere, which is calculated from the rotational Raman cross sections of N2 and O2 molecules, and divided by the original solar spectrum. The slowly varying term is removed by fitting it with a cubic polynomial to obtain the differential Ring spectrum. The results agree well with the calculations using a radiative transfer model (R2=0.9663). Second, the differential Ring spectrum is computed using two fixed wavelengths of 410 nm and 488 nm, and the resulting differential Ring spectra are similar to that calculated with varying wavelengths and agree well with the calculation using the radiative transfer model (R2=0.9624 and 0.9639 respectively). The computation time using the fixed wavelength is about 0.128% of that using a varying wavelength. Finally, we found that the frequency spectrum of the Raman cross sections for the atmosphere, N2 molecules and O2 molecules are similar; thus, the Raman cross section of N2 or O2 molecules can be used to compute the approximate Ring effect for simplicity.展开更多
In this paper the effects of aerosol on tropospheric ozone measurements by three-wavelength (266-289-308nm) dual differential absorption lidar (DIAL) and two-wavelength (266-289 nm and 266-308 nm) DIAL are simulated.B...In this paper the effects of aerosol on tropospheric ozone measurements by three-wavelength (266-289-308nm) dual differential absorption lidar (DIAL) and two-wavelength (266-289 nm and 266-308 nm) DIAL are simulated.By using the two kinds of DIAL.vertical profiles of ozone density from 2 to 3.6 km altitude range are measured.Both simulation and observation results show that the three-wavelength dual-DIAL method is more effective to reduce the effects of aerosol than the two-wavelength DIAL method.Therefore,accurate ozone density distributions can be retrieved by the three wavelength dual DIAL method.展开更多
A single-frequency pulsed holmium-doped yttrium lithium fluoride(Ho:YLF)amplifier pumped by a Tm-doped fiber laser was demonstrated.The seed was an injection-seeded Q-switched Ho:YLF laser.The output energy from the s...A single-frequency pulsed holmium-doped yttrium lithium fluoride(Ho:YLF)amplifier pumped by a Tm-doped fiber laser was demonstrated.The seed was an injection-seeded Q-switched Ho:YLF laser.The output energy from the singlefrequency pulsed amplifier was 24.2 mJ,with a pulse width of 250 ns at a pulse repetition frequency(PRF)of 100 Hz.The energy stability during 30 min was improved to 1%after the single-frequency pulsed Ho:YLF laser was amplified.The line width of the single-frequency pulsed spectrum of the Ho:YLF amplifier was 2.81 MHz.The single-frequency pulsed Ho:YLF amplifier can be applied to differential absorption lidar(DIAL),since its output spectrum is around the P12 CO2 absorption line.展开更多
Broadly,the oxygen evolution reaction(OER)has been deeply understood as a significant part of energy conversion and storage.Nevertheless,the anions in the OER catalysts have been neglected for various reasons such as ...Broadly,the oxygen evolution reaction(OER)has been deeply understood as a significant part of energy conversion and storage.Nevertheless,the anions in the OER catalysts have been neglected for various reasons such as inactive sites,dissolution,and oxidation,amongst others.Herein,we applied a model catalyst s-Ni(OH)2 to track the anionic behavior in the catalyst during the electrochemical process to fill this gap.The advanced operando synchrotron radiation Fourier transform infrared(SR-FTIR)spectroscopy,synchrotron radiation photoelectron spectroscopy(SRPES)depth detection and differential X-ray absorption fine structure(D-XAFS)spectrum jointly point out that some oxidized sulfur species(SO_(4)^(2-))will selfoptimize new Ni–S bonds during OER process.Such amazing anionic self-optimization(ASO)behavior has never been observed in the OER process.Subsequently,the optimization-derived component shows a significantly improved electrocatalytic performance(activity,stability,etc.)compared to reference catalyst Ni(OH)_(2).Theoretical calculation further suggests that the ASO process indeed derives a thermodynamically stable structure of the OER catalyst,and then gives its superb catalytic performance by optimizing the thermodynamic and kinetic processes in the OER,respectively.This work demonstrates the vital role of anions in the electrochemical process,which will open up new perspectives for understanding OER and provide some new ideas in related fields(especially catalysis and chemistry).展开更多
文摘Using the Differential Absorption Lidar (DIAL) technique, two types of approaches, namely, reflection from retroreflector / topographic target and backscatter from atmosphere, are available for studying remotely the atmospheric NO, concentration. The Argon ion lidar system at the Indian Institute of Tropical Meteorology (IITM), Pune, India has been used for the measurements by following both the path-averaged and range-resolved approaches. For the former, a topographic target (hill) is used for determining path-averaged surface concentration. In the latter, spectral properties of atmospheric attenuation is used for making range-resolved measurements in the surface layer. The results of the observations collected by following both approaches are presented. The average surface NO2 concentration was found to vary between 0.01 and 0.105 ppm and the range-resolved measurements exhibited higher values suggesting treatment of the lidar data for scattering and extinction effects due to atmospheric aerosols and air molecules, and atmospheric turbulence. Certain modifications that are suggested to the experimental set-up, data acquisition and analysis to improve the measurements are briefly described.
文摘In this paper, the effect of scintillation on system SNR is discussed. Atmospheric scintillation is described and log amplitude variance in slant path is given. In addition, the simulations of system SNR at different propagation path and different height are obtained. The results from simulation show that atmospheric scintillation has an important effect on SNR of DIAL system, especially near the ground.
文摘An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety.
基金This work was supported by the National 863 High Technology Research and Development Projects,S,
文摘Based on Raman-shifted wavelengths of D2 and CHr pumped by third harmonic of Nd:YAG laser, a differential absorption lidar was presented in this paper and had been constructed for probing environmental NO2 concentration. NO2 experimental measurements were carried out at Anhui Institute of Optics and Fine Mechanics in Hefei. Some NO2 measurement results were given and discussed.
文摘The long-path differential optical absorption spectroscopy (LP-DOAS) technique was developed to mea- sure nighttime atmospheric nitrate radical (NO3) concentrations. An optimized retrieval method, resulting in a small residual structure and low detection limits, was developed to retrieve NO3. The time series of the NO3 concentration were collected from 17 to 24 March, 2006, where a nighttime average value of 15.8 ppt was observed. The interfering factors and errors are also discussed. These results indicate that the DOAS technique provides an essential tool for the quantification of NO3 concentration and in the study of its effects upon nighttime chemistry.
基金supported by the National Natural Science Foundation of China(Grant Nos.41275037,41275038,and 41275027)
文摘An airborne multi-axis differential optical absorption spectroscopic (AMAX-DOAS) instrument was developed and applied to measure tropospheric NO2 in the Pearl River Delta region in the south of China. By combining the measurements in nadir and zenith directions and analyzing the UV and visible spectral region using the DOAS method, information about tropospheric NO2 vertical columns was obtained. Strong tropospheric NO2 signals were detected when flying over heavilly polluted regions and point sources like plants. The AMAX-DOAS results were compared with ground-based MAX-DOAS observations in the southwest of Zhuhai city using the same parameters for radiative transport calculations. The difference in vertical column data between the two instruments is about 8%. Our data were also compared with those from OMI and fair agreement was obtained with a correlation coefficient R of 0.61. The difference between the two instruments can be attributed to the different spatial resolution and the temporal mismatch during the measurements.
文摘During the measurement of atmospheric nitrate radical by long-path differential optical absorption spectroscopy, water vapor strong absorption could affect the measurement of nitrate radical and detection limits of system. Under the tropospheric condition, the optical density of water vapor absorption is non-linearly dependent on column density. An effective method was developed to eliminate the effect of water vapor absorption. Reference spectra of water vapor based on the daytime atmospheric absorption spectra, when fitted together with change of cross section with water vapor column densities, gave a more accurate fitting of water vapor absorptions, thus its effect on the measurements of nitrate radical could be restricted to a minimum and detection limits of system reached 3.6 ppt. The modified method was applied during an intensive field campaign in the Pearl River Delta, China. The NO3 concentration in polluted air masses varied from 3.6 ppt to 82.5 ppt with an average level of 23.6±1.8 ppt.
基金This work was supported by the National Natural Science Foundation of China (No.20273066).
文摘It was reported on the elimination of interfering absorption of BTX. the absorption of O2 includes different absorption bands, which change differently when the partial pressure of oxygen is varied. These cause the nonlinear absorption of O2 and the observed band shape to vary with the column density of O2. The absorption ratios of molecular absorption in each of the Herzberg bands and dimer absorptions, as well as the contribution to the correction error of molecular absorption, are studied based on the characteristic of these absorption bands. The optimized way to eliminate the interfering absorption is obtained in the end and the effectiveness of using interpolation proposed by Volkamer et al. to remove O2 absorption is proved again. As to O2 and SO2, the effect of the thermal effect of characteristic spectra on the elimination error of their absorption is studied. Solutions to these problems are discussed and demonstrated together with methods to optimize the interpolation of spectra. As a sample application, differential optical absorption spectroscopy (DOAS) measurements of BTX are carried out. Results show a low detection limit and the good correlation with point instruments are achieved. All these prove the feasibility of using spectral interpolation to improve the accuracy of DOAS measurements of aromatic hydrocarbons for practical purposes.
基金ACKNOWLEDGMENTS We acknowledged to DOAS groups. This work was supported by the Key Project of Chinese Ministry of Education (No.209057), the Anhui Provincial Natural Science Foundation (No.090412028), and the Natural Science Foundation of Anhui Province Colleges and University (No.KJ2008A114).
文摘A new indicator with temperature dependence of the NO3 loss frequency, was developed to study the contribution of NO3 to the oxidation of monoterpenes and NOx removal in the atmosphere. The new indicator arises from the temperature dependence of kinetic constant. The new indicator was applied to data of observation based on differential optical absorption spectroscopy system on the outskirts of Hefei, China. According to the findings, the contribution of monoterpenes to the loss of NO3 was 70%-80%.
文摘Measurements of atmospheric benzene and toluene were carried out continuously using dif- ferential optical absorption spectroscopy from August 7 to August 28 in Beijing during the period of vehicular restrictions. The correlations between traffic flows and totals of benzene and toluene were studied during the period of vehicular traffic restrictions from August 17 to August 20 and non-traffic restrictions on August 16 and August 21. The correlation coef- ficient was 0.8 between benzene and toluene. And the calculated daily mean value ratios of benzene to toluene were 0.43-0.50. During the period of vehicular restrictions, traffic flows were reduced about 11.8% and the levels of benzene and toluene were reduced by 11.4% and 12.8%, respectively. The vehicle emissions were recognized as the major sources for atmospheric benzene and toluene in Beijing.
基金Project supported by National Natural Science Foundation of China (Grant No 10274080).
文摘With the method of differential optical absorption spectroscopy (DOAS), average concentrations of aerosol particles along light path were measured with a flashlight source in Chiba area during the period of one month. The optical thickness at 550 nm is compared with the concentration of ground-measured suspended particulate matter (SPM). Good correlations are found between the DOAS and SPM data, leading to the determination of the aerosol mass extinction efficiency (MEE) to be possible in the lower troposphere. The average MEE value is about 7.6m^2.g^-1 , and the parameter exhibits a good correlation with the particle size as determined from the wavelength dependence of the DOAS signal intensity.
文摘A field-based Intercomparison study of a commercial Differential Optical Absorption Spectroscopy (DOAS) instrument (OPSIS AB, Sweden) and different point-sample monitoring techniques (PM, based on an air monitoring station, an air monitoring vehicle, and various chemical methods) was conducted in Beijing from October 1999 to January 2000. The mixing ratios of six trace gases including NO, NO2, SO2, O3, benzene, and toluene were monitored continuously during the four months. A good agreement between the DOAS and PM data was found for NO2 and SO2. However, the concentrations of benzene, toluene, and NO obtained by DOAS were significantly lower than those measured by the point monitors. The ozone levels monitored by the DOAS were generally higher than those measured by point monitors. These results may be attributed to a strong vertical gradient of the NO-O3-NO2 system and of the aromatics at the measurement site. Since the exact data evaluation algorithm is not revealed by the manufacturer of the DOAS system, the error in the DOAS analysis can also not be excluded.
文摘The excellent response characteristics and detection sensitivity with much lower operational cost and the capability to discriminate between the isomer of some monoaromatic hydrocarbons (MAHCs) make differential optical absorption spectroscopy (DOAS) a powerful tool to trace concentration variation of MAHCs. But due to the similarity in chemical structure, those MAHCs have the similar overlapped characteristic absorption structures, which make the selection of instrumental parameter critical to the accurate detection of MAHCs. Firstly, the spectral resolution used in DOAS system determines the nonlinear absorption of O2 and the mass dependence of characteristic absorption structure; thereby it determines the effect of elimination error of O2 absorption in the atmospheric spectra for the detection of MAHCs. Secondly, spectral resolution determines the differential absorption characteristics of twelve MAHCs representing major constituents in technical solvents used in the automobile industry and the interference of spectral overlapping. Thirdly, the spectral resolution determines the sensitivity, time resolution and linear range. So the spectral resolution range with the best ratio of signal to noise is used to determine the most suitable spectral resolution range, as well as the spectral resolution range that ensure the characteristic absorption structure of MAHCs and the minimization of O2 absorption interference. Finally, 0.15-0.16 nm (FWHM: full width at half maximum) is assumed to be closest to the optimum spectral resolution and it is confirmed by the results of practical measurement of MAHCs by DOAS.
文摘Observation of nighttime nitrate radical (NO3) was performed by using long path differential optical absorption spectroscopy (LP- DOAS), on the outskirts of Hefei, China. The time series of NO3 and supporting parameters were simultaneously measured for a week (31 May-7 June 2006). The results indicated that the average concentration of NO3 was 15.6 pptv with an average lifetimes of 96 s, whereas, NO3 production rates varied from 8×10^2/(cm^3·s) to 2.98×10^7/(cm^3·s). Furthermore, the calculated N2O5 concentration averaged at 380 pptv. Analysis of data indicated that direct sinks were probably dominating the NO3 loss process during this campaign. The results were compared with other campaigns in the boundary layer.
文摘Continuous data of aerosol optical thickness monitored using differential optical absorption spectroscopy (DOAS) are correlated with the concentration of ground-measured suspended particulate matter (SPM). A high correlation is found between the DOAS and the ground SPM data, making it possible to calculate the mass extinction efficiency of the aerosols in the atmosphere. It is found that the value of mean mass extinction efficiency (MEE) varies over a range of 2.6-13.7 m^2 g^-1, with smaller and larger values occurring for size distributions dominated by coarse and fine particles, respectively.
基金the National Natural Science Foundation of China(Grant No.41875040)the Top-notch Talents Program in Universities of Anhui Province,China(Grant No.gxbjZD2020067)the Natural Science Research Projects of Universities in Anhui Province,China(Grant No.KJ2020A0029).
文摘Obtaining the vertical distribution profile of trace gas is of great significance for studying the diffusion procedure of air pollution.In this article,a look-up table method based on multi-axis differential optical absorption spectroscopy(MAX-DOAS)technology is established for retrieving the tropospheric NO_(2) vertical distribution profiles.This method retrieves the aerosol extinction profiles with minimum cost function.Then,the aerosol extinction profiles and the atmospheric radiation transfer model(RTM)are employed to establish the look-up table for retrieving the NO_(2) vertical column densities(VCDs)and profiles.The measured NO_(2) differential slant column densities(DSCDs)are compared with the NO_(2) DSCDs simulated by the atmospheric RTM,and the NO_(2) VCDs,the weight factor of NO_(2) in the boundary layer,and the boundary layer height are obtained by the minimization process.The look-up table is established to retrieve NO_(2) VCDs based on MAX-DOAS measurements in Huaibei area,and the results are compared with the data from Copernicus Atmospheric Monitoring Service(CAMS)model.It is found that there are nearly consistent and the correlation coefficient R2 is more than 0.86.The results show that this technology provides a more convenient and accurate retrieval method for the stereoscopic monitoring of atmospheric environment.
文摘The Ring effect refers to the filling in of Fraunhofer lines, which is mainly attributed to the rotational Raman scattering of solar spectra by N2 and O2 molecules in the atmosphere. The Ring effect is one of the most significant factors affecting the accuracy of retrieving concentrations of atmospheric trace gases, such as NO2 and SO2, from satellite observations through differential optical absorption spectroscopy. First in this study, the solar spectrum measured by the Ozone Monitoring Instrument onboard NASA Aura is convolved with the rotational Raman cross section of the atmosphere, which is calculated from the rotational Raman cross sections of N2 and O2 molecules, and divided by the original solar spectrum. The slowly varying term is removed by fitting it with a cubic polynomial to obtain the differential Ring spectrum. The results agree well with the calculations using a radiative transfer model (R2=0.9663). Second, the differential Ring spectrum is computed using two fixed wavelengths of 410 nm and 488 nm, and the resulting differential Ring spectra are similar to that calculated with varying wavelengths and agree well with the calculation using the radiative transfer model (R2=0.9624 and 0.9639 respectively). The computation time using the fixed wavelength is about 0.128% of that using a varying wavelength. Finally, we found that the frequency spectrum of the Raman cross sections for the atmosphere, N2 molecules and O2 molecules are similar; thus, the Raman cross section of N2 or O2 molecules can be used to compute the approximate Ring effect for simplicity.
基金This work is supported by the National High Technology Research and Development Plan and National Natural Science Foundation of China(49775258).
文摘In this paper the effects of aerosol on tropospheric ozone measurements by three-wavelength (266-289-308nm) dual differential absorption lidar (DIAL) and two-wavelength (266-289 nm and 266-308 nm) DIAL are simulated.By using the two kinds of DIAL.vertical profiles of ozone density from 2 to 3.6 km altitude range are measured.Both simulation and observation results show that the three-wavelength dual-DIAL method is more effective to reduce the effects of aerosol than the two-wavelength DIAL method.Therefore,accurate ozone density distributions can be retrieved by the three wavelength dual DIAL method.
基金supported by the National Natural Science Foundation of China(No.51572053)。
文摘A single-frequency pulsed holmium-doped yttrium lithium fluoride(Ho:YLF)amplifier pumped by a Tm-doped fiber laser was demonstrated.The seed was an injection-seeded Q-switched Ho:YLF laser.The output energy from the singlefrequency pulsed amplifier was 24.2 mJ,with a pulse width of 250 ns at a pulse repetition frequency(PRF)of 100 Hz.The energy stability during 30 min was improved to 1%after the single-frequency pulsed Ho:YLF laser was amplified.The line width of the single-frequency pulsed spectrum of the Ho:YLF amplifier was 2.81 MHz.The single-frequency pulsed Ho:YLF amplifier can be applied to differential absorption lidar(DIAL),since its output spectrum is around the P12 CO2 absorption line.
基金supported in part by the National Key R&D Program of China(2017YFA0303500)the National Natural Science Foundation of China(U1932201,21727801,and 51902303)+4 种基金the National Natural Science Foundation of China-Ministry of Foreign Affairs and International Cooperation of Italy(51861135202)CAS International Partnership Program(211134KYSB20190063)Key Research Program of Frontier Sciences(QYZDB-SSW-SLH018)the University of Science and Technology of China start-up fundCAS Interdisciplinary Innovation Team。
文摘Broadly,the oxygen evolution reaction(OER)has been deeply understood as a significant part of energy conversion and storage.Nevertheless,the anions in the OER catalysts have been neglected for various reasons such as inactive sites,dissolution,and oxidation,amongst others.Herein,we applied a model catalyst s-Ni(OH)2 to track the anionic behavior in the catalyst during the electrochemical process to fill this gap.The advanced operando synchrotron radiation Fourier transform infrared(SR-FTIR)spectroscopy,synchrotron radiation photoelectron spectroscopy(SRPES)depth detection and differential X-ray absorption fine structure(D-XAFS)spectrum jointly point out that some oxidized sulfur species(SO_(4)^(2-))will selfoptimize new Ni–S bonds during OER process.Such amazing anionic self-optimization(ASO)behavior has never been observed in the OER process.Subsequently,the optimization-derived component shows a significantly improved electrocatalytic performance(activity,stability,etc.)compared to reference catalyst Ni(OH)_(2).Theoretical calculation further suggests that the ASO process indeed derives a thermodynamically stable structure of the OER catalyst,and then gives its superb catalytic performance by optimizing the thermodynamic and kinetic processes in the OER,respectively.This work demonstrates the vital role of anions in the electrochemical process,which will open up new perspectives for understanding OER and provide some new ideas in related fields(especially catalysis and chemistry).