In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where ...In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail.展开更多
We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations...We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations to systems of algebraic differential equations.展开更多
Using Nevanlinna theory of the value distribution of meromorphic functions, the author investigates the problem of the growth of solutions of two types of algebraic differential equation and obtains some results.
Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized higher order algebraic differential equations.
The main purpose of this paper is to study the problems on the existence of algebraic solutions for some second-order complex differential equations with entire algebraic function element coeifficients. Several theore...The main purpose of this paper is to study the problems on the existence of algebraic solutions for some second-order complex differential equations with entire algebraic function element coeifficients. Several theorems on the existence of solutions are obtained, which perfect the solution theory of linear complex differential equations.展开更多
Using value distribution theory and techniques,the problem of the algebroid solutions of second order algebraic differential equation is investigated.Examples show that the results are sharp.
This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
Linear differential-algebraic equations (DAEs) with time-varying coefficients A(t)x(1)(t) + B(t)x(t) = q(t), which are tractable with a higher index. are discussed. Their essential properties are investigated. Some eq...Linear differential-algebraic equations (DAEs) with time-varying coefficients A(t)x(1)(t) + B(t)x(t) = q(t), which are tractable with a higher index. are discussed. Their essential properties are investigated. Some equivalent system,,; are given. Using them the paper shows how to state properly initial and boundary conditions for these DAEs. The existence and uniqueness theory of the solution of the initial and boundary value problems for higher index DAEs are proposed.展开更多
This research aims to solve Differential Algebraic Equation (DAE) problems in their original form, wherein both the differential and algebraic equations remain. The Newton or Newton-Broyden technique along with some i...This research aims to solve Differential Algebraic Equation (DAE) problems in their original form, wherein both the differential and algebraic equations remain. The Newton or Newton-Broyden technique along with some integrators such as the Runge-Kutta method is coupled together to solve the problems. Experiments show that the method developed in this paper is efficient, as it demonstrates that implementation of the method is not difficult, and such method is able to provide approximate solutions with ease within some desired accuracy standards.展开更多
In this work, we consider the second order nonlinear integro-differential Equation (IDEs) of the Volterra-Fredholm type. One of the popular methods for solving Volterra or Fredholm type IDEs is the method of quadratur...In this work, we consider the second order nonlinear integro-differential Equation (IDEs) of the Volterra-Fredholm type. One of the popular methods for solving Volterra or Fredholm type IDEs is the method of quadrature while the problem of consideration is a linear problem. If IDEs are nonlinear or integral kernel is complicated, then quadrature rule is not most suitable;therefore, other types of methods are needed to develop. One of the suitable and effective method is homotopy analysis method (HAM) developed by Liao in 1992. To apply HAM, we firstly reduced the IDEs into nonlinear integral Equation (IEs) of Volterra-Fredholm type;then the standard HAM was applied. Gauss-Legendre quadrature formula was used for kernel integrations. Obtained system of algebraic equations was solved numerically. Moreover, numerical examples demonstrate the high accuracy of the proposed method. Comparisons with other methods are also provided. The results show that the proposed method is simple, effective and dominated other methods.展开更多
In this paper, by means of the normal family theory, we estimate the growth order of meromorphic solutions of some algebraic differential equations and improve the related result of Barsegian et al. [6]. We also give ...In this paper, by means of the normal family theory, we estimate the growth order of meromorphic solutions of some algebraic differential equations and improve the related result of Barsegian et al. [6]. We also give some examples to show that our results occur in some special cases.展开更多
The second order Euler-Lagrange equations are transformed to a set of first order differential/algebraic equations, which are then transformed to state equations by using local parameterization. The corresponding disc...The second order Euler-Lagrange equations are transformed to a set of first order differential/algebraic equations, which are then transformed to state equations by using local parameterization. The corresponding discretization method is presented, and the results can be used to implementation of various numerical integration methods. A numerical example is presented finally.展开更多
In this article, we give a simple proof of Malmquist-Yosida type theorem of higher order algebraic differential equations, which is different from the methods as that of Gackstatter and Laine [2], and Steinmetz [12].
In this article, linear regular index 2 DAEs A(t)[D(t)x(t)]' + B(t)x(t) = q(t) are considered. Using a decoupling technique, initial condition and boundary condition are properly formulated. Regular inde...In this article, linear regular index 2 DAEs A(t)[D(t)x(t)]' + B(t)x(t) = q(t) are considered. Using a decoupling technique, initial condition and boundary condition are properly formulated. Regular index 1 DAEs are obtained by a regularization method. We study the behavior of the solution of the regularization system via asymptotic expansions. The error analysis between the solutions of the DAEs and its regularization system is given.展开更多
Using Nevanlinna theory and value distribution of meromorphic functions and the other techniques,we investigate the counting functions of meromorphic solutions of systems of higher-order algebraic differential equatio...Using Nevanlinna theory and value distribution of meromorphic functions and the other techniques,we investigate the counting functions of meromorphic solutions of systems of higher-order algebraic differential equations and obtain some results.展开更多
Magnetic resonance elastography (MRE) can visualize the shear wave propagation of in vivo tissues, which can be mapped into viscoelastic properties. No study has measured the biomechanical properties of the PM muscle ...Magnetic resonance elastography (MRE) can visualize the shear wave propagation of in vivo tissues, which can be mapped into viscoelastic properties. No study has measured the biomechanical properties of the PM muscle in vivo using MRE. In this study, we evaluated stiffness values calculated by local frequency estimate (LFE) and algebraic inversion of differential equation (AIDE) in PM-MRE. The PM muscles of 17 healthy male volunteers were scanned in supine position by MRE. The Laplacian-based estimate (LBE) phase wrapped image data were filtered by gaussian-bandpass filter (GBF), and by both directional and GBF. LFE (MREWave) and AIDE wave inversion methods were used to calculate the respective elastograms. The wave interferences were removed by directional filtering, and smooth wave fields were obtained. The stiffness values calculated by LFE of non-DF images were 1.39 ± 0.25 kPa and 1.33 ± 0.22 kPa for right and left PM respectively, whereas for DF images, they were 1.26 ± 0.20 kPa for right PM and 1.18 ± 0.28 kPa for left PM. The stiffness values calculated by AIDE of non-DF images were 0.78 ± 0.10 kPa and 0.78 ± 0.13 kPa for right and left PM respectively, whereas for DF images, they were 0.73 ± 0.12 kPa for right PM and 0.74 ± 0.11 kPa for left PM. There was no statistically significant difference in mean values of stiffness with/without applying directional filter whereas there was a statistically significant difference in mean values of stiffness between LFE and AIDE. Both LFE and AIDE could be used for psoas major MR Elastography.展开更多
Nonlinear fractional differential-algebraic equations often arise in simulating integrated circuits with superconductors. How to obtain the nonnegative solutions of the equations is an important scientific problem. As...Nonlinear fractional differential-algebraic equations often arise in simulating integrated circuits with superconductors. How to obtain the nonnegative solutions of the equations is an important scientific problem. As far as we known, the nonnegativity of solutions of the nonlinear fractional differential-algebraic equations is still not studied. In this article, we investigate the nonnegativity of solutions of the equations. Firstly, we discuss the existence of nonnegative solutions of the equations, and then we show that the nonnegative solution can be approached by a monotone waveform relaxation sequence provided the initial iteration is chosen properly. The choice of initial iteration is critical and we give a method of finding it. Finally, we present an example to illustrate the efficiency of our method.展开更多
A symbolic computation method to decide whether the solutions to the system Of linear partial differential equation is complete via using differential algebra and characteristic set is presented. This is a mechanizati...A symbolic computation method to decide whether the solutions to the system Of linear partial differential equation is complete via using differential algebra and characteristic set is presented. This is a mechanization method, and it can be carried out on the computer in the Maple environment.展开更多
The method of boundary layer with multiple scales and computer algebra were applied to study the asymptotic behavior of solution of boundary value problems for a class of system of nonlinear differential equations . T...The method of boundary layer with multiple scales and computer algebra were applied to study the asymptotic behavior of solution of boundary value problems for a class of system of nonlinear differential equations . The asymptotic expansions of solution were constructed. The remainders were estimated. And an example was analysed. It provides a new foreground for the application of the method of boundary layer with multiple scales .展开更多
文摘In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail.
基金supported by the Natural Science Foundationof China (10471065)the Natural Science Foundation of Guangdong Province (N04010474)
文摘We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations to systems of algebraic differential equations.
基金The project Supported by NNSF of China(19971052)
文摘Using Nevanlinna theory of the value distribution of meromorphic functions, the author investigates the problem of the growth of solutions of two types of algebraic differential equation and obtains some results.
文摘Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized higher order algebraic differential equations.
基金Supported by Guangdong Natural Science Foundation(2015A030313628,S2012010010376)Training plan for Distinguished Young Teachers in Higher Education of Guangdong(Yqgdufe1405)+1 种基金Guangdong Education Science Planning Project(2014GXJK091,GDJG20142304)the National Natural Science Foundation of China(11301140,11101096)
文摘The main purpose of this paper is to study the problems on the existence of algebraic solutions for some second-order complex differential equations with entire algebraic function element coeifficients. Several theorems on the existence of solutions are obtained, which perfect the solution theory of linear complex differential equations.
文摘Using value distribution theory and techniques,the problem of the algebroid solutions of second order algebraic differential equation is investigated.Examples show that the results are sharp.
基金Supported by the Natural Science Foundation of Guangdong Province(04010474) Supported by the Foundation of the Education Department of Anhui Province for Outstanding Young Teachers in University(2011SQRL172)
文摘This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
基金Project supported by the National Natural Science Foundation of China by Jiangsu Provincial Natural Science Foundation
文摘Linear differential-algebraic equations (DAEs) with time-varying coefficients A(t)x(1)(t) + B(t)x(t) = q(t), which are tractable with a higher index. are discussed. Their essential properties are investigated. Some equivalent system,,; are given. Using them the paper shows how to state properly initial and boundary conditions for these DAEs. The existence and uniqueness theory of the solution of the initial and boundary value problems for higher index DAEs are proposed.
文摘This research aims to solve Differential Algebraic Equation (DAE) problems in their original form, wherein both the differential and algebraic equations remain. The Newton or Newton-Broyden technique along with some integrators such as the Runge-Kutta method is coupled together to solve the problems. Experiments show that the method developed in this paper is efficient, as it demonstrates that implementation of the method is not difficult, and such method is able to provide approximate solutions with ease within some desired accuracy standards.
文摘In this work, we consider the second order nonlinear integro-differential Equation (IDEs) of the Volterra-Fredholm type. One of the popular methods for solving Volterra or Fredholm type IDEs is the method of quadrature while the problem of consideration is a linear problem. If IDEs are nonlinear or integral kernel is complicated, then quadrature rule is not most suitable;therefore, other types of methods are needed to develop. One of the suitable and effective method is homotopy analysis method (HAM) developed by Liao in 1992. To apply HAM, we firstly reduced the IDEs into nonlinear integral Equation (IEs) of Volterra-Fredholm type;then the standard HAM was applied. Gauss-Legendre quadrature formula was used for kernel integrations. Obtained system of algebraic equations was solved numerically. Moreover, numerical examples demonstrate the high accuracy of the proposed method. Comparisons with other methods are also provided. The results show that the proposed method is simple, effective and dominated other methods.
基金supported by the NNSF of China(11101048)supported by the Tianyuan Youth Fund of the NNSF of China(11326083)+4 种基金the Shanghai University Young Teacher Training Program(ZZSDJ12020)the Innovation Program of Shanghai Municipal Education Commission(14YZ164)the Projects(13XKJC01)from the Leading Academic Discipline Project of Shanghai Dianji Universitysupported by the NNSF of China(11271090)the NSF of Guangdong Province(S2012010010121)
文摘In this paper, by means of the normal family theory, we estimate the growth order of meromorphic solutions of some algebraic differential equations and improve the related result of Barsegian et al. [6]. We also give some examples to show that our results occur in some special cases.
文摘The second order Euler-Lagrange equations are transformed to a set of first order differential/algebraic equations, which are then transformed to state equations by using local parameterization. The corresponding discretization method is presented, and the results can be used to implementation of various numerical integration methods. A numerical example is presented finally.
基金supported by the Jiangsu Overseas Research and Training Program for University Prominent Young and Middle-aged Teachers and PresidentsNatural Science Foundation of China(11671191,11426118)+1 种基金Natural Science Foundation of Jiangsu Province(BK20140767)Qing Lan Project of Jiangsu Province
文摘In this article, we give a simple proof of Malmquist-Yosida type theorem of higher order algebraic differential equations, which is different from the methods as that of Gackstatter and Laine [2], and Steinmetz [12].
基金Project supported by the Foundation for the Authors of the National Excellent Doctoral Thesis Award of China (200720)
文摘In this article, linear regular index 2 DAEs A(t)[D(t)x(t)]' + B(t)x(t) = q(t) are considered. Using a decoupling technique, initial condition and boundary condition are properly formulated. Regular index 1 DAEs are obtained by a regularization method. We study the behavior of the solution of the regularization system via asymptotic expansions. The error analysis between the solutions of the DAEs and its regularization system is given.
基金Supported by the National Natural Science Foundation of China(10471065) Supported by the Natural Science Foundation of Guangdong Province(04010474)
文摘Using Nevanlinna theory and value distribution of meromorphic functions and the other techniques,we investigate the counting functions of meromorphic solutions of systems of higher-order algebraic differential equations and obtain some results.
文摘Magnetic resonance elastography (MRE) can visualize the shear wave propagation of in vivo tissues, which can be mapped into viscoelastic properties. No study has measured the biomechanical properties of the PM muscle in vivo using MRE. In this study, we evaluated stiffness values calculated by local frequency estimate (LFE) and algebraic inversion of differential equation (AIDE) in PM-MRE. The PM muscles of 17 healthy male volunteers were scanned in supine position by MRE. The Laplacian-based estimate (LBE) phase wrapped image data were filtered by gaussian-bandpass filter (GBF), and by both directional and GBF. LFE (MREWave) and AIDE wave inversion methods were used to calculate the respective elastograms. The wave interferences were removed by directional filtering, and smooth wave fields were obtained. The stiffness values calculated by LFE of non-DF images were 1.39 ± 0.25 kPa and 1.33 ± 0.22 kPa for right and left PM respectively, whereas for DF images, they were 1.26 ± 0.20 kPa for right PM and 1.18 ± 0.28 kPa for left PM. The stiffness values calculated by AIDE of non-DF images were 0.78 ± 0.10 kPa and 0.78 ± 0.13 kPa for right and left PM respectively, whereas for DF images, they were 0.73 ± 0.12 kPa for right PM and 0.74 ± 0.11 kPa for left PM. There was no statistically significant difference in mean values of stiffness with/without applying directional filter whereas there was a statistically significant difference in mean values of stiffness between LFE and AIDE. Both LFE and AIDE could be used for psoas major MR Elastography.
基金supported by the Natural Science Foundation of China(NSFC)under grant 11501436Young Talent fund of University Association for Science and Technology in Shaanxi,China(20170701)
文摘Nonlinear fractional differential-algebraic equations often arise in simulating integrated circuits with superconductors. How to obtain the nonnegative solutions of the equations is an important scientific problem. As far as we known, the nonnegativity of solutions of the nonlinear fractional differential-algebraic equations is still not studied. In this article, we investigate the nonnegativity of solutions of the equations. Firstly, we discuss the existence of nonnegative solutions of the equations, and then we show that the nonnegative solution can be approached by a monotone waveform relaxation sequence provided the initial iteration is chosen properly. The choice of initial iteration is critical and we give a method of finding it. Finally, we present an example to illustrate the efficiency of our method.
文摘A symbolic computation method to decide whether the solutions to the system Of linear partial differential equation is complete via using differential algebra and characteristic set is presented. This is a mechanization method, and it can be carried out on the computer in the Maple environment.
文摘The method of boundary layer with multiple scales and computer algebra were applied to study the asymptotic behavior of solution of boundary value problems for a class of system of nonlinear differential equations . The asymptotic expansions of solution were constructed. The remainders were estimated. And an example was analysed. It provides a new foreground for the application of the method of boundary layer with multiple scales .