期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Differential Tectonic Deformation of the Longmen Mountain Thrust Belt,Western Sichuan Basin,China 被引量:6
1
作者 TANG Liangjie YANG Keming +3 位作者 JIN Wenzheng WAN Guimei LüZhizhou YU Yixin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第1期158-169,共12页
Field investigation and seismic section explanation showed that the Longmen Mountain Thrust Belt has obvious differential deformation: zonation, segmentation and stratification. Zonation means that, from NW to NE, th... Field investigation and seismic section explanation showed that the Longmen Mountain Thrust Belt has obvious differential deformation: zonation, segmentation and stratification. Zonation means that, from NW to NE, the Longmen Mountain Thrust Belt can be divided into the Songpan- Garz~ Tectonic Belt, ductile deformation belt, base involved thrust belt, frontal fold-thrust belt, and foreland depression. Segmentation means that it can be divided into five segments from north to south: the northern segment, the Anxian Transfer Zone, the center segment, the Guanxian Transfer Zone and the southern segment. Stratification means that the detachment layers partition the structural styles in profile. The detachment layers in the Longmen Mountain Thrust Belt can be classified into three categories: the deep-level detachment layers, including the crust-mantle system detachment layer, intracrustal detachment layer, and Presinian system basal detachment layer; the middle-level detachment layers, including Cambrian-Ordovician detachment layer, Silurian detachment layer, etc.; and shallow-level detachment layers, including Upper Triassic Xujiahe Formation detachment layer and the Jurassic detachment layers. The multi-level detachment layers have a very important effect on the shaping and evolution of Longmen Mountain Thrust Belt. 展开更多
关键词 differential deformation detachment layer segmentation STRATIFICATION transfer zone zonation Longmen Mountain Thrust Belt
下载PDF
Vertical Differential Structural Deformation of the Main Strike-slip Fault Zones in the Shunbei Area,Central Tarim Basin:Structural Characteristics,Deformation Mechanisms,and Hydrocarbon Accumulation Significance 被引量:1
2
作者 TIAN Fanglei HE Dengfa +1 位作者 CHEN Jiajun MAO Danfeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第4期1415-1431,共17页
Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and i... Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and its hydrocarbon accumulation significance.Based on drilling data and high-precision 3-D seismic data,we analyzed the geometric and kinematic characteristics of the SSFZs in the Shunbei area.Coupled with the stratification of the rock mechanism,the structural deformations of these SSFZs in different formations were differentiated and divided into four deformation layers.According to comprehensive structural interpretations and comparisons,three integrated 3-D structural models could describe the VDSD of these SSFZs.The time-space coupling of the material basis(rock mechanism stratification),changing dynamic conditions(e.g.,changing stress-strain states),and special deformation mechanism of the en echelon normal fault array uniformly controlled the formation of the VDSD in the SSFZs of the Shunbei area.The VDSD of the SSFZs in this area controlled the entire hydrocarbon accumulation process.Multi-stage structural superimposing deformation influenced the hydrocarbon migration,accumulation,distribution,preservation,and secondary adjustments. 展开更多
关键词 strike-slip fault vertical differential structural deformation hydrocarbon accumulation Shunbei area central Tarim Basin
下载PDF
Differentiable Deformation Graph-Based Neural Non-rigid Registration
3
作者 Wanquan Feng Hongrui Cai +2 位作者 Junhui Hou Bailin Deng Juyong Zhang 《Communications in Mathematics and Statistics》 SCIE CSCD 2023年第1期151-167,共17页
The traditional pipeline for non-rigid registration is to iteratively update the correspondence and alignment such that the transformed source surface aligns well with the target surface.Among the pipeline,the corresp... The traditional pipeline for non-rigid registration is to iteratively update the correspondence and alignment such that the transformed source surface aligns well with the target surface.Among the pipeline,the correspondence construction and iterative manner are key to the results,while existing strategies might result in local optima.In this paper,we adopt the widely used deformation graph-based representation,while replacing some key modules with neural learning-based strategies.Specifically,we design a neural network to predict the correspondence and its reliability confidence rather than the strategies like nearest neighbor search and pair rejection.Besides,we adopt the GRU-based recurrent network for iterative refinement,which is more robust than the traditional strategy.The model is trained in a self-supervised manner and thus can be used for arbitrary datasets without ground-truth.Extensive experiments demonstrate that our proposed method outperforms the state-of-the-art methods by a large margin. 展开更多
关键词 Differentiable deformation graph Non-rigid registration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部