The seismic performance of a caisson structure under two types of models with a saturated sandy foundation(CSS)and an expanded polystyrene(EPS)composite soil foundation(CES)are studied using shaking table tests.The ma...The seismic performance of a caisson structure under two types of models with a saturated sandy foundation(CSS)and an expanded polystyrene(EPS)composite soil foundation(CES)are studied using shaking table tests.The macro phenomena of the two different foundation models are described and analyzed.The effects of the replacement of EPS composite soil on seismic-induced liquefaction of backfill and the dynamic performance of a caisson structure are evaluated in detail.The results show that the excess pore water pressure generation in the CES is significantly slower than that in the CSS during the shaking.The dynamic earth pressure acting on the caisson has a triangular shape.The response of horizontal acceleration,displacement,settlement,and rotation angle of the caisson in the CES is smaller than that in the CSS,which means the caisson in the CES has a better seismic performance.Furthermore,the out-of-phase phenomenon between dynamic earth thrust and inertial force in the CES is more obvious than that in the CSS,which is beneficial to reduce the lateral force and improve the stability of the caisson structure.展开更多
A sensitive method to determine the optic axis azimuth of the birefringence element is presented, which is based on laser feedback. The phase difference between the two intensities in birefringence feedback changes wi...A sensitive method to determine the optic axis azimuth of the birefringence element is presented, which is based on laser feedback. The phase difference between the two intensities in birefringence feedback changes with the angle between the optic axis of the birefringence element and laser original polarization. The phase difference is highly sensitive to the relative position of the optic axis and the laser original polarization. This method is used to highly precisely determine the optic axis azimuth, and is able to distinguish between the fast axis and the slow axis of the birefringence element. Theoretical analysis and experimental results are both demonstrated.展开更多
Phasor measurement units(PMUs)provide useful data for real-time monitoring of the smart grid.However,there may be time-varying deviation in phase angle differences(PADs)between both ends of the transmission line(TL),w...Phasor measurement units(PMUs)provide useful data for real-time monitoring of the smart grid.However,there may be time-varying deviation in phase angle differences(PADs)between both ends of the transmission line(TL),which may deteriorate application performance based on PMUs.To address that,this paper proposes two robust methods of correcting time-varying PAD deviation with unknown parameters of TL(ParTL).First,the phenomena of time-varying PAD deviation observed from field PMU data are presented.Two general formulations for PAD estimation are then established.To simplify the formulations,estimation of PADs is converted into the optimal problem with a single ParTL as the variable,yielding a linear estimation of PADs.The latter is used by second-order Taylor series expansion to estimate PADs accurately.To reduce the impact of possible abnormal amplitude data in field data,the IGG(Institute of Geodesy&Geophysics,Chinese Academy of Sciences)weighting function is adopted.Results using both simulated and field data verify the effectiveness and robustness of the proposed methods.展开更多
基金National Natural Science Foundation of China under Grant Nos. 52178336 and 52108324Natural Science Research Project of Colleges and Universities in Jiangsu Province of China under Grant No. 18KJA560002+1 种基金the Middle-Aged&Young Science Leaders of Qinglan Project of Universities in Jiangsu Province of ChinaPostgraduate Research&Practice Innovation Program in Jiangsu Province of China under Grant No. KYCX24_1585
文摘The seismic performance of a caisson structure under two types of models with a saturated sandy foundation(CSS)and an expanded polystyrene(EPS)composite soil foundation(CES)are studied using shaking table tests.The macro phenomena of the two different foundation models are described and analyzed.The effects of the replacement of EPS composite soil on seismic-induced liquefaction of backfill and the dynamic performance of a caisson structure are evaluated in detail.The results show that the excess pore water pressure generation in the CES is significantly slower than that in the CSS during the shaking.The dynamic earth pressure acting on the caisson has a triangular shape.The response of horizontal acceleration,displacement,settlement,and rotation angle of the caisson in the CES is smaller than that in the CSS,which means the caisson in the CES has a better seismic performance.Furthermore,the out-of-phase phenomenon between dynamic earth thrust and inertial force in the CES is more obvious than that in the CSS,which is beneficial to reduce the lateral force and improve the stability of the caisson structure.
基金Project supported by the Natural Science Foundation of Beijing,China(Grant No.3091002)
文摘A sensitive method to determine the optic axis azimuth of the birefringence element is presented, which is based on laser feedback. The phase difference between the two intensities in birefringence feedback changes with the angle between the optic axis of the birefringence element and laser original polarization. The phase difference is highly sensitive to the relative position of the optic axis and the laser original polarization. This method is used to highly precisely determine the optic axis azimuth, and is able to distinguish between the fast axis and the slow axis of the birefringence element. Theoretical analysis and experimental results are both demonstrated.
基金This work was supported by the National Key Research and Development Program of China(2017YFB0902901)National Natural Science Foundation of China(51627811).
文摘Phasor measurement units(PMUs)provide useful data for real-time monitoring of the smart grid.However,there may be time-varying deviation in phase angle differences(PADs)between both ends of the transmission line(TL),which may deteriorate application performance based on PMUs.To address that,this paper proposes two robust methods of correcting time-varying PAD deviation with unknown parameters of TL(ParTL).First,the phenomena of time-varying PAD deviation observed from field PMU data are presented.Two general formulations for PAD estimation are then established.To simplify the formulations,estimation of PADs is converted into the optimal problem with a single ParTL as the variable,yielding a linear estimation of PADs.The latter is used by second-order Taylor series expansion to estimate PADs accurately.To reduce the impact of possible abnormal amplitude data in field data,the IGG(Institute of Geodesy&Geophysics,Chinese Academy of Sciences)weighting function is adopted.Results using both simulated and field data verify the effectiveness and robustness of the proposed methods.