期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Differential pressure difference based altitude control of a stratospheric satellite
1
作者 陈丽 WANG Xiaoliang 《High Technology Letters》 EI CAS 2024年第1期1-12,共12页
An autonomous altitude adjustment system for a stratospheric satellite(StratoSat)platform is proposed.This platform consists of a helium balloon,a ballonet,and a two-way blower.The helium balloon generates lift to bal... An autonomous altitude adjustment system for a stratospheric satellite(StratoSat)platform is proposed.This platform consists of a helium balloon,a ballonet,and a two-way blower.The helium balloon generates lift to balance the platform gravity.The two-way blower inflates and deflates the ballonet to regulate the buoyancy.Altitude adjustment is achieved by tracking the differential pressure difference(DPD),and a threshold switching strategy is used to achieve blower flow control.The vertical acceleration regulation ability is decided not only by the blower flow rate,but also by the designed margin of pressure difference(MPD).Pressure difference is a slow-varying variable compared with altitude,and it is adopted as the control variable.The response speed of the actuator to disturbance can be delayed,and the overshoot caused by the large inertia of the platform is inhibited.This method can maintain a high tracking accuracy and reduce the complexity of model calculation,thus improving the robustness of controller design. 展开更多
关键词 stratospheric satellite(StratoSat) differential pressure difference(DPD) altitude adjustment threshold switching strategy margin of pressure difference(MPD)
下载PDF
Sand Production Prediction and Safe Differential Pressure Determination in a Deepwater Gas Field
2
作者 Hao Qiu Yi Wu +5 位作者 Min Wen Xuesong Xing Zening Hou Nan Ma Zizhen Zhang Rui Zhang 《Fluid Dynamics & Materials Processing》 EI 2023年第3期579-592,共14页
Sand production is a critical issue during the development of offshore oil and gas fields.Certain gas fields(e.g.the AB gas field)have high porosity and high permeability,and with water at the bottom of the reservoir,... Sand production is a critical issue during the development of offshore oil and gas fields.Certain gas fields(e.g.the AB gas field)have high porosity and high permeability,and with water at the bottom of the reservoir,the risk of sand production greatly increases at high differential pressures.Based on reservoir properties,geological conditions,production requirements,and well logging data,in this study an ultrasonic time difference method,a B index method,and a S index method are used together with a model of rock mass failure(accounting for water influx and pressure depletion)to qualitatively predict sand production.The results show that considered sample gas field has an overall high risk of sand production.The critical differential pressure(CDP)without water influx is in the range of 1.40 to 2.35 MPa,the CDP after water influx is from 0.60 to 1.41MPa.The CDP under pressure depletion is in the range of 1.20 to 1.92 MPa.The differential pressure charts of sand production are plotted,and the safe differential pressure windows with or without water influx are obtained.The model calculation results and the experimental results are consistent with the field production data,which indicates that the implemented prediction method could be taken as a reference for sand production prediction in similar deep water gas fields. 展开更多
关键词 Sand production differential pressure water influx pressure depletion
下载PDF
Research on double differential pressure dynamic flowmeter 被引量:1
3
作者 Liu Tao Zuo Zhibing Yin Zhigang 《High Technology Letters》 EI CAS 2019年第4期378-385,共8页
When testing an electrohydraulic proportional valve,it is necessary to test the high frequency dynamic flow with bias.Because of the limitation of the piston stroke,a no-load hydraulic cylinder is only suitable for a ... When testing an electrohydraulic proportional valve,it is necessary to test the high frequency dynamic flow with bias.Because of the limitation of the piston stroke,a no-load hydraulic cylinder is only suitable for a reciprocating symmetrical dynamic flow test.Since the traditional differential pressure flowmeter is affected by viscosity and inertia of the fluid,it is only suitable for measuring steady flow.Therefore,a new type of double pressure differential dynamic flowmeter is designed to improve the traditional differential pressure flowmeter.The influence of fluid viscosity and inertia in the flow process are negated by subtracting the differential pressure in section expansion from the differential pressure in section contraction.The double differential pressure flowmeter is modeled and a flow meter prototype is designed.Then,the flow coefficients are identified and corrected by a practical test.Finally,the dynamic performance and steady-state precision of the flowmeter are verified by comparing with the test results of the no-load hydraulic cylinder.The double differential pressure dynamic flowmeter is proven to measure dynamic flow accurately,especially at higher dynamic frequencies. 展开更多
关键词 dynamic flowmeter double differential pressure contrast experiment coefficient correction
下载PDF
Liquid Level Measurement in Oil Tanks Based on Double-differential Pressure Technique 被引量:1
4
作者 WEN Shu hui, DUAN Hui fang (School of Electr. Eng., Yanshan University, Qinhuangdao 066004, CHN) 《Semiconductor Photonics and Technology》 CAS 2001年第3期168-171,176,共5页
The system principle and configuration of the double differential pressure method for measuring oil tank level are presented. The fundamental method and circuit of fiber optic transmission are analyzed .The accuracy a... The system principle and configuration of the double differential pressure method for measuring oil tank level are presented. The fundamental method and circuit of fiber optic transmission are analyzed .The accuracy and security of level measurement in the oil tanks have been greatly improved. 展开更多
关键词 Double differential pressure technique Level measurement Fiber optic transmission
下载PDF
Reliability of gas holdup measurements using the differential pressure method in a cyclone-static micro-bubble flotation column 被引量:1
5
作者 Xia Wencheng Yang Jianguo Wang Yuling 《Mining Science and Technology》 EI CAS 2011年第6期797-801,共5页
Gas holdup is one of the key parameters in flotation process. Gas holdup as measured by a differential pressure method was investigated and the relative errors compared to the average gas holdup from the volume expans... Gas holdup is one of the key parameters in flotation process. Gas holdup as measured by a differential pressure method was investigated and the relative errors compared to the average gas holdup from the volume expansion method. The errors were used to establish optimum measurement positions. The results show that the measurement position should be in the middle of the column and in the region half way from the center to the wall (the half-radius). The gas holdup along the axial direction is lower at the bottom and higher at the top of the floatation column. The gas holdup along the radial direction is lower near the wall and higher near the center of the flotation column. The average gas holdup measure- ment can be replaced by regional gas holdup values. 展开更多
关键词 Gas holdup distribution differential pressure method Measurement positions Axial direction Radial direction
下载PDF
Analysis of Gas Flow Rate and Pressure Loss of Medical Mask Differential Pressure Tester
6
作者 Zechen Lin Qing Zhang +1 位作者 Jianjun Sun Xiujun Yao 《Journal of Clinical and Nursing Research》 2022年第4期120-127,共8页
The objective of this study is to find a suitable method to overcome the pressure loss problem in the gas pipe during the gas exchange detection of medical masks.Based on the European Standards EN 14683,the parameters... The objective of this study is to find a suitable method to overcome the pressure loss problem in the gas pipe during the gas exchange detection of medical masks.Based on the European Standards EN 14683,the parameters of a medical mask differential pressure tester were selected,subsequently two schemes of gas pipe layouts were designed,including four kinds of pipe diameter which are 4,5,6.5,and 8mm respectively.Lastly,the models of each scheme were established and imported into Fluent,and the relevant parameters were set for simulation.After data analysis,the results showed that among the four different pipe diameters,the pressure loss of 8mm diameter of the pipe was lower in both the schemes,additionally the pressure loss of the second scheme(the gas pipe was short and smooth)was lower under the same pipe diameter.At the flow rate of v=8L/min,the pressure loss from the inlet to the measurement point is less than 200Pa,and the estimated measurement error is less than 1.5%.In conclusion,shortening the length of the pipe,and increasing the diameter of the pipe can reduce the gas pressure loss,subsequently improve the measurement accuracy of the medical mask differential pressure tester. 展开更多
关键词 Medical mask differential pressure Flow rate pressure loss Fluid simulation
下载PDF
Design of Na-K Alloy Differential Pressure Sensor with On-line Monitoring Function
7
作者 WU Linghui XU Dong 《International Journal of Plant Engineering and Management》 2018年第3期129-133,共5页
Because the melting point of the alkalis is very high and the metal activity is strong, the common pressure sensor can't be used to measure pressure of liquid metal. In this paper, a differential transformer differen... Because the melting point of the alkalis is very high and the metal activity is strong, the common pressure sensor can't be used to measure pressure of liquid metal. In this paper, a differential transformer differential pressure sensor for measuring liquid alkalis pressure is designed, the working principle and specific design plan of the sensor are introduced, the standard current signal ( 4 -20 mA) or digital communication RS485 can be output according to the needs, and the functions of remote monitoring and data optimization can be realized through the LAN interface. 展开更多
关键词 BELLOWS differential pressure sensor spring mechanism high temperature on-line monitoring
下载PDF
A triboelectric nanogenerator based on a spiral rotating shaft for efficient marine energy harvesting of the hydrostatic pressure differential
8
作者 Xuemei Song Yuan Chao Pan +4 位作者 Chang Bao Han Chang Xin Liu Yaxiaer Yalikun Hui Yan Yang Yang 《Materials Reports(Energy)》 EI 2024年第3期69-76,共8页
Equipment used in underwater sensing and exploration typically relies on cables or batteries for energy supply,resulting in a limited and inconvenient energy supply and marine environmental pollution that hinder the s... Equipment used in underwater sensing and exploration typically relies on cables or batteries for energy supply,resulting in a limited and inconvenient energy supply and marine environmental pollution that hinder the sustainable development of distributed ocean sensing networks.Here,we design a deep-sea differential-pressure triboelectric nanogenerator(DP-TENG)based on a spiral shaft drive using modified polymer materials to harness the hydrostatic pressure gradient energy at varying ocean depths to power underwater equipment.The spiral shaft structure converts a single compression into multiple rotations of the TENG rotor,achieving efficient conversion of differential pressure energy.The multi-pair electrode design enables the DP-TENG to generate a peak current of 61.7μA,the instantaneous current density can reach 0.69μA cm^(-2),and the output performance can be improved by optimizing the spiral angle of the shaft.The DP-TENG can charge a 33μF capacitor to 17.5 V within five working cycles.It can also power a digital calculator and light up 116 commercial power light-emitting diodes,demonstrating excellent output capability.With its simple structure,low production cost,and small form factor,the DP-TENG can be seamlessly integrated with underwater vehicles.The results hold broad prospects for underwater blue energy harvesting and are expected to contribute to the development of self-powered equipment toward emerging“smart ocean”and blue economy applications. 展开更多
关键词 Triboelectric nanogenerators Blue energy Energy harvesting differential pressure energy Self-power sensor
下载PDF
Differential pressure reset strategy based on reinforcement learning for chilled water systems 被引量:1
9
作者 Xinfang Zhang Zhenhai Li +2 位作者 Zhengwei Li Shunian Qiu Hai Wang 《Building Simulation》 SCIE EI CSCD 2022年第2期233-248,共16页
Air conditioning water systems account for a large proportion of building energy consumption.In a pressure-controlled water system,one of the key measures to save energy is to adjust the differential pressure setpoint... Air conditioning water systems account for a large proportion of building energy consumption.In a pressure-controlled water system,one of the key measures to save energy is to adjust the differential pressure setpoints during operation.Typically,such adjustments are based either on certain rules,which rely on operator experience,or on complicated models that are not easy to calibrate.In this paper,a data-driven control method based on reinforcement learning is proposed.The main idea is to construct an agent model that adapts to the researched problem.Instead of directly being told how to react,the agent must rely on its own experiences to learn.Compared with traditional control strategies,reinforcement learning control(RLC)exhibits more accurate and steady performances while maintaining indoor air temperature within a limited range.A case study shows that the RLC strategy is able to save substantial amounts of energy. 展开更多
关键词 water system differential pressure reset reinforcement learning control energy saving
原文传递
Online differential pressure reset method with adaptive adjustment algorithm for variable chilled water flow control in central air-conditioning systems
10
作者 Tianyi Zhao Ying Zhou +1 位作者 Jili Zhang Xiuming Li 《Building Simulation》 SCIE EI CSCD 2021年第5期1407-1422,共16页
Central air-conditioning systems predominantly operate under partial load conditions.The optimization of a differential pressure setpoint in the chilled water system of a central air-conditioning system leads to a mor... Central air-conditioning systems predominantly operate under partial load conditions.The optimization of a differential pressure setpoint in the chilled water system of a central air-conditioning system leads to a more energy-efficient operation.Determining the differential pressure adjustment value based on the terminal user's real-time demand is one of the critical issues to be addressed during the optimal control process.Furthermore,the online application of the differential pressure setpoint optimization method needs to be considered,along with the stability of the system.This paper proposes a variable differential pressure reset method with an adaptive adjustment algorithm based on the Mamdani fuzzy model.The proposed method was compared with differential pressure reset methods with reference to the chilled water differential temperature,outdoor temperature,and linear model based on the adjustment algorithm.The energy-saving potential,temperature control effect,and avoidance of the most unfavorable thermodynamic loop effects of the four methods were investigated experimentally.The results indicated that,while satisfying the terminal user's energy supply demand and ensuring the avoidance of the most unfavorable thermodynamic loop,the proposed adaptive adjustment algorithm also decreased the differential pressure setpoint value by 25.1%—59.1%and achieved energy savings of 10.6%-45.0%.By monitoring the valve position and supply air temperature of each terminal user,the proposed method exhibited suitable online adaptability and could be flexibly applied to buildings with random load changes. 展开更多
关键词 central air-conditioning system variable water flow control most unfavorable thermodynamic loop differential pressure reset adaptive control
原文传递
Electric power generation technology of natural gas pressure reduction:Insights from black box-gray box hierarchical exergy analysis and evaluation method
11
作者 Zhi-Dong Li Qing-Lin Cheng +4 位作者 You-Wang Chen Jiang-Dong Wei Li-Li Lv Hao Wu Yang Liu 《Petroleum Science》 SCIE CAS CSCD 2022年第1期329-338,共10页
Based on the“three box”exergy analysis model,a black box-gray box hierarchical exergy analysis and evaluation method is put forward in this paper,which is applied to evaluate the power generation technology of diffe... Based on the“three box”exergy analysis model,a black box-gray box hierarchical exergy analysis and evaluation method is put forward in this paper,which is applied to evaluate the power generation technology of differential pressure produced by natural gas expansion.By using the exergy analysis theory,the black box-gray box hierarchical exergy analysis models of three differential pressure power generation technologies are established respectively.Firstly,the“black box”analysis models of main energy consuming equipment are established,and then the“gray box”analysis model of the total system is established.Based on the calculation results of exergy analysis indexes,the weak energy consumption equipment in the whole power generation process is accurately located.Taking a gas field in southwest China as an example,the comprehensive energy consumption evaluation of the three power generation technologies is carried out,and the technology with the best energy consumption condition among the three technologies is determined.Finally,the rationalization improvement measures are put forward from improving the air tightness,replacing the deflector and reducing the flow loss. 展开更多
关键词 Expansion differential pressure power generation Black box-gray box hierarchy Exergy analysis method Weak link of energy consumption
下载PDF
An Analysis of the Static and Dynamic Behavior of the Hydraulic Compensation System of a Multichannel Valve
12
作者 Jikang Xu Ruichuan Li +5 位作者 Yi Cheng Yanchao Li Junru Yang Chenyu Feng Xinkai Ding Huazhong Zhang 《Fluid Dynamics & Materials Processing》 EI 2023年第7期1817-1836,共20页
Electro-hydraulic proportional valve is the core control valve in many hydraulic systems used in agricultural and engineering machinery.To address the problem related to the large throttling losses and poor stability ... Electro-hydraulic proportional valve is the core control valve in many hydraulic systems used in agricultural and engineering machinery.To address the problem related to the large throttling losses and poor stability typically associated with these valves,here,the beneficial effects of a triangular groove structure on the related hydraulic response are studied.A mathematical model of the pressure compensation system based on the power-bond graph method is introduced,and the AMESim software is used to simulate its response.The results show that the triangular groove structure increases the jet angle and effectively compensates for the hydrodynamic force.The steady-state differential pressure at the valve port of the new pressure compensation structure was 0.65 MPa.Furthermore,experimental results show that the pressure difference at the main valve port is 0.73 MPa,and that the response time is less than 0.2 s.It is concluded that the new compensation structure has good pressure compensation response characteristics. 展开更多
关键词 Electrohydraulic proportional valve spool shape pressure compensation valve port differential pressure response time
下载PDF
Flow Regime Identification of Gas-liquid Two-phase Flow Based on HHT 被引量:11
13
作者 孙斌 张宏建 +1 位作者 程路 赵玉晓 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第1期24-30,共7页
A new method to identify flow regime in two-phase flow was presented, based on signal processing of differential pressure using Hilbert Huang transform (HHT). Signals obtained from a Venturi meter were decomposed in... A new method to identify flow regime in two-phase flow was presented, based on signal processing of differential pressure using Hilbert Huang transform (HHT). Signals obtained from a Venturi meter were decomposed into different intrinsic mode functions (IMFs) with HHT, then the energy fraction of each intrinsic mode and the mean value of residual function were calculated, from which the rules of flow regime identification were summarized. Experiments were carried out on two-phase flow in the horizontal tubes with 50mm and 40mm inner diameter, while water flowrate was in the range of 1.3m^3.h^-1 to 10.5m^3.h^-1, oil flowrate was from 4.2m^3.h^-1 to 7.0m^3.h^-1 and gas flowrate from 0 to 15m^3.h^-1. The results show that the proposed rules have high precision for single phase, bubbly, and slug, plug flow regirne identification, which are independent of not only properties of two-phase fluid. In addition, the method can meet the need of industrial application because of its simple calculation. 展开更多
关键词 flow regime Hilbert-Huang transform differential pressure signal intrinsic mode function gas-liquid two-phase flow
下载PDF
Influence of the Hole Chamfer on the Characteristics of a Multi-hole Orifice Flowmeter 被引量:4
14
作者 Caizhe Hao Xiaoming Song Zhining Jia 《Fluid Dynamics & Materials Processing》 EI 2019年第4期391-401,共11页
In order to analyze the influence of the hole chamfer on the metering performances of a Multi-hole Orifice Flowmeter and optimize the related orifice structure,a multi-hole orifice flowmeter with DN80 and throttle rat... In order to analyze the influence of the hole chamfer on the metering performances of a Multi-hole Orifice Flowmeter and optimize the related orifice structure,a multi-hole orifice flowmeter with DN80 and throttle ratio of 0.45 was considered in the present study.The flow field characteristics were determined in the framework of a CFD technique.The results show that the multi-hole orifice flowmeter with filleting transition around the throttle orifice has higher accuracy in a wide range of the space of parameters,and is more suitable for accurate measurement of fluid in process control. 展开更多
关键词 Multi-hole orifice differential pressure CHAMFER CFD simulation
下载PDF
Piloting Study on Biofouling Control of Reverse Osmosis System in Steel Mill Wastewater Reuse
15
作者 Cheng Yang Tina Arrowood Jon Johnson 《Journal of Environmental Science and Engineering(A)》 2017年第9期453-461,共9页
The biofouling of RO (Reverse Osmosis) system is one of the most common problems in highly contaminated demineralization and wastewater reuse system. The biological fouling occurs due to the bacteria growth and prol... The biofouling of RO (Reverse Osmosis) system is one of the most common problems in highly contaminated demineralization and wastewater reuse system. The biological fouling occurs due to the bacteria growth and proliferation under nutritive environment, resulting in a dramatic increase of dP (differential pressure) in the RO system, which requires frequent system shutdown for cleaning. This paper discusses the effectiveness of low-dP RO element and periodic flushing on the biofouling scheme of industrial steel mill wastewater reuse system. The low-dP RO element is able to provide low RO system dP, which is expressed to be lower biofouling starting point during the industrial system operation. However, the periodic flushing utilizes fresh water to remove the biofilm deposit along with feed channel. The long term operation performance demonstrated strong caustic is effective in removing the biofilm and recovering RO system performance. It is experimentally validated that, in the case of a high biofouling environment, low-dP RO element and periodic flushing is able to extend the cleaning cycles by 36.6% and 11.4%, respectively. Meanwhile, a joint application of both methods is proven to improve the biofouling control and extend the cleaning cycle by 62.5%, as compared to standard RO technology. 展开更多
关键词 RO (Reverse Osmosis) BIOFOULING MEMBRANE dP differential pressure wastewater reuse
下载PDF
Measurment of gas-liquid two-phase slug flow with a Venturi meter based on blind source separation
16
作者 王微微 梁霄 张明柱 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第9期1447-1452,共6页
We propose a novel flow measurement method for gas–liquid two-phase slug flow by using the blind source separation technique. The flow measurement model is established based on the fluctuation characteristics of diff... We propose a novel flow measurement method for gas–liquid two-phase slug flow by using the blind source separation technique. The flow measurement model is established based on the fluctuation characteristics of differential pressure(DP) signals measured from a Venturi meter. It is demonstrated that DP signals of two-phase flow are a linear mixture of DP signals of single phase fluids. The measurement model is a combination of throttle relationship and blind source separation model. In addition, we estimate the mixture matrix using the independent component analysis(ICA) technique. The mixture matrix could be described using the variances of two DP signals acquired from two Venturi meters. The validity of the proposed model was tested in the gas–liquid twophase flow loop facility. Experimental results showed that for most slug flow the relative error is within 10%.We also find that the mixture matrix is beneficial to investigate the flow mechanism of gas–liquid two-phase flow. 展开更多
关键词 Two-phase slug flow Flow measurement differential pressure Blind source separation Independent component analysis
下载PDF
LIQUID-GAS TWO PHASE FLOW RATES METERING BY DUAL PRESSURE DIFFERENTIAL MEASUREMENTS
17
作者 M.R.Davis 《Journal of Hydrodynamics》 SCIE EI CSCD 1994年第3期85-96,共12页
The measurement of the overall mass flow rates in a two phase, gas/liquid pipeline is considered on the basis of dual pressure differential measurements for a combined contraction/frictional pipe type of flow meter an... The measurement of the overall mass flow rates in a two phase, gas/liquid pipeline is considered on the basis of dual pressure differential measurements for a combined contraction/frictional pipe type of flow meter and a numerical model to predict overall mass flow rates from pressure differentials measured from this type of flow meter is presented. The experiments generally conform with the predictions of the flow rates prediction model. Whilst the practicability of such metering of two phase flows is clearly demonstrated, application of the method would require careful calibration to allow for the influence of nozzle coefficients, pipe Reynolds number and void fraction upon the one dimensional compressible flow equations through wall friction factor and interphase slip effects. 展开更多
关键词 two phase flow MEASUREMENT pressure differential.
原文传递
Micro-flow structure at regime transition from bubbling to turbulent fluidization in a fluidized bed 被引量:1
18
作者 Chaoyu Yan Yue Yuan +1 位作者 Xiaoyang Wei Jesse Zhu 《Particuology》 SCIE EI CAS CSCD 2024年第6期117-130,共14页
Gas-solid fluidized beds have found extensive utilization in frontline manufacturing,in particular as low-velocity beds.The fluidization status,the bubbling or turbulent flow regime and the transition in between,deter... Gas-solid fluidized beds have found extensive utilization in frontline manufacturing,in particular as low-velocity beds.The fluidization status,the bubbling or turbulent flow regime and the transition in between,determine the system performance in practical applications.Though the convoluted hydrodynamics are quantitively evaluated through numerous data-processing methodologies,none of them alone can reflect all the critical information to identify the transition from the bubbling to the turbulent regime.Accordingly,this study was to exploit a coupling data processing methodology,in the combination of standard deviation,power spectrum density,probability density function,wavelet transform,and wavelet multiresolution method,to jointly explain the micro-flow structure at the regime transition from bubbling to turbulent fluidization.The transient differential pressure fluctuation was measured for the evaluation in a fluidized bed(0.267 m i.d.×2.5 m height)with FCC catalysts(d_(p)=65μm,ρ_(p)=1780kg/m^(3))at different superficial gas velocities(0.02–1.4 m/s).The results show that the onset of turbulent fluidization starts earlier in the top section of the bed than in the bottom section.The wavelet decomposition displays that the fluctuation of differential pressure mainly concentrates on the sub-signals with an intermediate frequency band.These sub-signals could be synthesized into three types of scales(micro-scale,meso-scale,and macro-scale),representing the multi-scale hydrodynamics in the fluidized bed.The micro-scale signal has the characteristic information of bubbling fluidization,and the characteristic information of turbulent fluidization is mainly represented by the meso-scale signal.This work provides a systematic comprehension of fluidization status assessment and serves as an impetus for more coupling analysis in this sector. 展开更多
关键词 Flow regime transition Bubbling fluidization Turbulent fluidization Micro-flow structure differential pressure fluctuation
原文传递
Distribution characteristics of holdups in a multi-stage bubble column using electrical resistance tomography 被引量:1
19
作者 Haibo Jin Yicheng Lian +2 位作者 Yujian Qin Suohe Yang Guangxiang He 《Particuology》 SCIE EI CAS CSCD 2013年第2期225-231,共7页
Based on the principle of chemical reaction engineering, the addition of perforated plates can improve the performance of conventional bubble column and decrease the backmixing behaviors. The distribution characterist... Based on the principle of chemical reaction engineering, the addition of perforated plates can improve the performance of conventional bubble column and decrease the backmixing behaviors. The distribution characteristics of gas holdup in a multi-stage bubble column embedded with five types of sieve plates and three types of tongue plates were studied using electrical resistance tomography (ERT). The effects of superficial gas velocity and the geometric design of perforated plates on the gas holdup and its radial distribution above and below the plates of the bubble column were discussed. Experimental results show ERT is suitable as an online monitoring tool to provide useful information on the hydrodynamic param-eters of multi-stage bubble columns. With increasing superficial gas velocity, local gas holdup increases, and gas holdup below the plate increases with decrease of free area (%FA), hole diameters or angle of tongue plates. ERT technique facilitates noninvasive and nonintrusive visualization of cross-sectional distribution of gas holdup in a bubble column. 展开更多
关键词 Bubble column Electrical resistance tomography differential pressure method Sieve plates Tongue plate
原文传递
Development of Test Method for Measuring Sintering Temperature of Mould Fluxes 被引量:1
20
作者 WANG Qian LU Yong-jian +2 位作者 HE Sheng-ping WANG Li-juan K C Mills 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第4期1-6,共6页
Excessive sintering of mould fluxes can readily cause defects and sticker breakouts in continuously cast strands.Studying the sintering property is important to minimize problems related to sintering arising from the ... Excessive sintering of mould fluxes can readily cause defects and sticker breakouts in continuously cast strands.Studying the sintering property is important to minimize problems related to sintering arising from the use of mould fluxes in continuous casting.An effective method of measuring the apparent sintering temperature has been developed in this study.The method is based on monitoring the formation of cavities caused by melting of samples.For monitoring,the differential pressure of an inert gas flow was measured through a set volume of sample(mould flux A)held in a furnace tube.The apparent sintering temperature was defined in this test to determine sintering process.The sintering properties of fluxes with various contents of carbon black were examined along with identification of mineralogical phases and the nature of the sinter for samples of mould flux A held for one hour at different temperatures.The experimental results indicated that the apparent sintering temperature(AST)was a useful parameter to assess the threat of problems related to sinter. 展开更多
关键词 mould flux sintering property differential pressure apparent sintering temperature
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部