Using numerical simulation data of the forward differential propagation shift (ΦDP) of polarimetric radar,the principle and performing steps of noise reduction by wavelet analysis are introduced in detail.Profiting...Using numerical simulation data of the forward differential propagation shift (ΦDP) of polarimetric radar,the principle and performing steps of noise reduction by wavelet analysis are introduced in detail.Profiting from the multiscale analysis,various types of noises can be identified according to their characteristics in different scales,and suppressed in different resolutions by a penalty threshold strategy through which a fixed threshold value is applied,a default threshold strategy through which the threshold value is determined by the noise intensity,or a ΦDP penalty threshold strategy through which a special value is designed for ΦDP de-noising.Then,a hard-or soft-threshold function,depending on the de-noising purpose,is selected to reconstruct the signal.Combining the three noise suppression strategies and the two signal reconstruction functions,and without loss of generality,two schemes are presented to verify the de-noising effect by dbN wavelets:(1) the penalty threshold strategy with the soft threshold function scheme (PSS); (2) the ΦDP penalty threshold strategy with the soft threshold function scheme (PPSS).Furthermore,the wavelet de-noising is compared with the mean,median,Kalman,and finite impulse response (FIR) methods with simulation data and two actual cases.The results suggest that both of the two schemes perform well,especially when ΦDP data are simultaneously polluted by various scales and types of noises.A slight difference is that the PSS method can retain more detail,and the PPSS can smooth the signal more successfully.展开更多
As a study on exploiting and popularizing the advanced dual-polarization weather radar technique in China,the physical mechanism for the propagation effect of the radar wave is discussed by using the widely adapted ex...As a study on exploiting and popularizing the advanced dual-polarization weather radar technique in China,the physical mechanism for the propagation effect of the radar wave is discussed by using the widely adapted extended boundary condition method,and some theoretic results are provided for improving rain measurement accuracy.Furthermore,phase information, another important characteristic quantity of microwave,is considered for tapping the potentialities of the new meteorological radar system.展开更多
利用中国气象科学研究院灾害天气国家重点实验室的车载C波段双线偏振多普勒雷达(C-band PolarimetricDoppler Radar on Wheel,CPDRW)的外场试验,在统计分析降水、地物回波差分传播相移φ_(DP)数据的差别与信噪比关系等基础上,提出了一...利用中国气象科学研究院灾害天气国家重点实验室的车载C波段双线偏振多普勒雷达(C-band PolarimetricDoppler Radar on Wheel,CPDRW)的外场试验,在统计分析降水、地物回波差分传播相移φ_(DP)数据的差别与信噪比关系等基础上,提出了一套数据分析和处理的方法。该方法通过φ_(DP)的异常波动并结合回波的强度Z_H和速度V_r信息将地物回波信号分离出来,在降水估测或衰减订正等定量应用时将其剔除。对于气象回波则根据信噪比及零滞后互相关系数ρ_(HV)(0)将φ_(DP)资料分为较好、较差和差3类。对于较好数据直接进行后续的预处理,对于较差数据先订正后处理,而对于差数据将其剔除以保证φ_(DP)资料的整体质量。经过大量资料的验证,该方法在最大程度上保留气象信息的同时也保证了φ_(DP)资料的质量,并能估算出质量较高的差分传播相移率K_(DP)资料。展开更多
The histories of differential pressure fluctuations and their Fast Fourier Transform spectrum have close relation with the flow regimes.Unfortunately,each type of flow regime is very difficult or impossible to be dist...The histories of differential pressure fluctuations and their Fast Fourier Transform spectrum have close relation with the flow regimes.Unfortunately,each type of flow regime is very difficult or impossible to be distinguished from the other on the basis of the fluctuations or the spectrum.The present paper provides a feasible solution, which the gas-liquid two-phase flow regimes can be recognized automatically and objectively on the basis of the combination of the Counter Propagation Network (CPN) and the FFT spectrum of the differential pressure fluctuations. The CPN takes advantages of simpler algorithm and fast training processes.Furthermore,it does not require a great deal of samples.The recognition possibility is determined by the clustering results of the Kohonen layer in the CPN.With the presented test cases,the possibility can be higher than 90 percent for different liquid phase velocity.展开更多
基金funded by National Natural Science Foundation of China (Grant No. 41375038)China Meteorological Administration Special Public Welfare Research Fund (Grant No. GYHY201306040,GYHY201306075)
文摘Using numerical simulation data of the forward differential propagation shift (ΦDP) of polarimetric radar,the principle and performing steps of noise reduction by wavelet analysis are introduced in detail.Profiting from the multiscale analysis,various types of noises can be identified according to their characteristics in different scales,and suppressed in different resolutions by a penalty threshold strategy through which a fixed threshold value is applied,a default threshold strategy through which the threshold value is determined by the noise intensity,or a ΦDP penalty threshold strategy through which a special value is designed for ΦDP de-noising.Then,a hard-or soft-threshold function,depending on the de-noising purpose,is selected to reconstruct the signal.Combining the three noise suppression strategies and the two signal reconstruction functions,and without loss of generality,two schemes are presented to verify the de-noising effect by dbN wavelets:(1) the penalty threshold strategy with the soft threshold function scheme (PSS); (2) the ΦDP penalty threshold strategy with the soft threshold function scheme (PPSS).Furthermore,the wavelet de-noising is compared with the mean,median,Kalman,and finite impulse response (FIR) methods with simulation data and two actual cases.The results suggest that both of the two schemes perform well,especially when ΦDP data are simultaneously polluted by various scales and types of noises.A slight difference is that the PSS method can retain more detail,and the PPSS can smooth the signal more successfully.
文摘As a study on exploiting and popularizing the advanced dual-polarization weather radar technique in China,the physical mechanism for the propagation effect of the radar wave is discussed by using the widely adapted extended boundary condition method,and some theoretic results are provided for improving rain measurement accuracy.Furthermore,phase information, another important characteristic quantity of microwave,is considered for tapping the potentialities of the new meteorological radar system.
文摘利用中国气象科学研究院灾害天气国家重点实验室的车载C波段双线偏振多普勒雷达(C-band PolarimetricDoppler Radar on Wheel,CPDRW)的外场试验,在统计分析降水、地物回波差分传播相移φ_(DP)数据的差别与信噪比关系等基础上,提出了一套数据分析和处理的方法。该方法通过φ_(DP)的异常波动并结合回波的强度Z_H和速度V_r信息将地物回波信号分离出来,在降水估测或衰减订正等定量应用时将其剔除。对于气象回波则根据信噪比及零滞后互相关系数ρ_(HV)(0)将φ_(DP)资料分为较好、较差和差3类。对于较好数据直接进行后续的预处理,对于较差数据先订正后处理,而对于差数据将其剔除以保证φ_(DP)资料的整体质量。经过大量资料的验证,该方法在最大程度上保留气象信息的同时也保证了φ_(DP)资料的质量,并能估算出质量较高的差分传播相移率K_(DP)资料。
文摘The histories of differential pressure fluctuations and their Fast Fourier Transform spectrum have close relation with the flow regimes.Unfortunately,each type of flow regime is very difficult or impossible to be distinguished from the other on the basis of the fluctuations or the spectrum.The present paper provides a feasible solution, which the gas-liquid two-phase flow regimes can be recognized automatically and objectively on the basis of the combination of the Counter Propagation Network (CPN) and the FFT spectrum of the differential pressure fluctuations. The CPN takes advantages of simpler algorithm and fast training processes.Furthermore,it does not require a great deal of samples.The recognition possibility is determined by the clustering results of the Kohonen layer in the CPN.With the presented test cases,the possibility can be higher than 90 percent for different liquid phase velocity.