The paper deals with the criteria for the closed- loop stability of a noise control system in a duct. To study the stability of the system, the model of delay differential equation is derived from the propagation of a...The paper deals with the criteria for the closed- loop stability of a noise control system in a duct. To study the stability of the system, the model of delay differential equation is derived from the propagation of acoustic wave governed by a partial differential equation of hyperbolic type. Then, a simple feedback controller is designed, and its closed- loop stability is analyzed on the basis of the derived model of delay differential equation. The obtained criteria reveal the influence of the controller gain and the positions of a sensor and an actuator on the closed-loop stability. Finally, numerical simulations are presented to support the theoretical results.展开更多
The video game presented in this paper is a prey-predator game where two preys (human players) must avoid three predators (automated players) and must reach a location in the game field (the computer screen) called pr...The video game presented in this paper is a prey-predator game where two preys (human players) must avoid three predators (automated players) and must reach a location in the game field (the computer screen) called preys’ home. The game is a sequence of matches and the human players (preys) must cooperate in order to achieve the best perform- ance against their opponents (predators). The goal of the predators is to capture the preys, which are the predators try to have a “rendez vous” with the preys, using a small amount of the “resources” available to them. The score of the game is assigned following a set of rules to the prey team, not to the individual prey. In some situations the rules imply that to achieve the best score it is convenient for the prey team to sacrifice one of his components. The video game pursues two main purposes. The first one is to show how the closed loop solution of an optimal control problem and elementary sta- tistics can be used to generate (game) actors whose movements satisfy the laws of classical mechanics and whose be- haviour simulates a simple form of intelligence. The second one is “educational”, in fact the human players in order to be successful in the game must understand the restrictions to their movements posed by the laws of classical mechanics and must cooperate between themselves. The video game has been developed having in mind as players for children aged between five and thirteen years. These children playing the video game acquire an intuitive understanding of the basic laws of classical mechanics (Newton’s dynamical principle) and enjoy cooperating with their teammate. The video game has been experimented on a sample of a few dozen children. The children aged between five and eight years find the game amusing and after playing a few matches develop an intuitive understanding of the laws of classical me- chanics. They are able to cooperate in making fruitful decisions based on the positions of the preys (themselves), of the predators (their opponents) and on the physical limitations to the movements of the game actors. The interest in the game decreases when the age of the players increases. The game is too simple to interest a teenager. The game engine consists in the solution of an assignment problem, in the closed loop solution of an optimal control problem and in the adaptive choice of some parameters. At the beginning of each match, and when necessary during a match, an assign- ment problem is solved, that is the game engine chooses how to assign to the predators the preys to chase. The resulting assignment implies some cooperation among the predators and defines the optimal control problem used to compute the strategies of the predators during the match that follows. These strategies are determined as the closed loop solution of the optimal control problem considered and can be thought as a (first) form of artificial intelligence (AI) of the preda- tors. In the optimal control problem the preys and the predators are represented as point masses moving according to Newton’s dynamical principle under the action of friction forces and of active forces. The equations of motion of these point masses are the constraints of the control problem and are expressed through differential equations. The formula- tion of the decision process through optimal control and Newton’s dynamical principle allows us to develop a game where the effectiveness and the goals of the automated players can be changed during the game in an intuitive way sim- ply modifying the values of some parameters (i.e. mass, friction coefficient, ...). In a sequence of game matches the predators (automated players) have “personalities” that try to simulate human behaviour. The predator personalities are determined making an elementary statistical analysis of the points scored by the preys in the game matches played and consist in the adaptive choice of the value of a parameter (the mass) that appears in the differential equations that define the movements of the predators. The values taken by this parameter determine the behaviour of the predators and their effectiveness in chasing the preys. The predators personalities are a (second) form of AI based on elementary statistics that goes beyond the intelligence used to chase the preys in a match. In a sequence of matches the predators using this second form of AI adapt their behaviour to the preys’ behaviour. The video game can be downloaded from the website: http://www.ceri.uniroma1.it/ceri/zirilli/w10/.展开更多
针对窄频差硅基环形波动陀螺动态性能差的问题,提出了一种基于比例积分微分-惯性环节(proportion integral differential-inertial element,PID-IE)的串联式相位校正检测闭环系统控制器。以硅微机械陀螺仪结构运动方程为基础建立了理想...针对窄频差硅基环形波动陀螺动态性能差的问题,提出了一种基于比例积分微分-惯性环节(proportion integral differential-inertial element,PID-IE)的串联式相位校正检测闭环系统控制器。以硅微机械陀螺仪结构运动方程为基础建立了理想的窄频差U形弹性梁硅基环形波动陀螺仪的系统模型。通过对环形陀螺开环工作状态下的系统模型及其外围电路的传递函数和波特图分析,设计了一种基于PID-IE的检测闭环系统控制器。通过对其系统模型及外围电路时域仿真,验证了该检测闭环控制系统的可行性,通过仿真发现,加入该控制器后的陀螺输出稳定时间减少了50%,陀螺检测位移输出减小了2个数量级,基本实现了该陀螺的检测位移抑制。在模拟电路中实现了该检测闭环控制系统后,通过实验测试了陀螺检测闭环控制前后的各项性能指标。通过实验测试发现,实现闭环控制后,陀螺输出稳定时间约为0.15 s,陀螺检测位移在闭环工作状态下比开环工作状态减小了97%,陀螺的标度因数比检测开环提高了10倍,零偏及零偏不稳定性与检测开环相比分别提升了3倍和8倍,且闭环控制系统的工作带宽比开环工作带宽提高了30倍。展开更多
The control problem for the multivariable and nonlinear dynamics of unmanned aerial vehicles and micro-satellites is solved with the use of a flatness-based control approach which is implemented in successive loops.Th...The control problem for the multivariable and nonlinear dynamics of unmanned aerial vehicles and micro-satellites is solved with the use of a flatness-based control approach which is implemented in successive loops.The state-space model of(i)unmanned aerial vehicles and(ii)micro-satellites is separated into two subsystems,which are connected between them in cascading loops.Each one of these subsystems can be viewed independently as a differentially flat system and control about it can be performed with inversion of its dynamics as in the case of input–output linearized flat systems.The state variables of the second subsystem become virtual control inputs for the first subsystem.In turn,exogenous control inputs are applied to the first subsystem.The whole control method is implemented in two successive loops and its global stability properties are also proven through Lyapunov stability analysis.The validity of the control method is confirmed in two case studies:(a)control and trajectories tracking for the autonomous octocopter,(ii)control of the attitude dynamics of micro-satellites.展开更多
Central air-conditioning systems predominantly operate under partial load conditions.The optimization of a differential pressure setpoint in the chilled water system of a central air-conditioning system leads to a mor...Central air-conditioning systems predominantly operate under partial load conditions.The optimization of a differential pressure setpoint in the chilled water system of a central air-conditioning system leads to a more energy-efficient operation.Determining the differential pressure adjustment value based on the terminal user's real-time demand is one of the critical issues to be addressed during the optimal control process.Furthermore,the online application of the differential pressure setpoint optimization method needs to be considered,along with the stability of the system.This paper proposes a variable differential pressure reset method with an adaptive adjustment algorithm based on the Mamdani fuzzy model.The proposed method was compared with differential pressure reset methods with reference to the chilled water differential temperature,outdoor temperature,and linear model based on the adjustment algorithm.The energy-saving potential,temperature control effect,and avoidance of the most unfavorable thermodynamic loop effects of the four methods were investigated experimentally.The results indicated that,while satisfying the terminal user's energy supply demand and ensuring the avoidance of the most unfavorable thermodynamic loop,the proposed adaptive adjustment algorithm also decreased the differential pressure setpoint value by 25.1%—59.1%and achieved energy savings of 10.6%-45.0%.By monitoring the valve position and supply air temperature of each terminal user,the proposed method exhibited suitable online adaptability and could be flexibly applied to buildings with random load changes.展开更多
基金the National Natural Science Foundation of China (10532050)
文摘The paper deals with the criteria for the closed- loop stability of a noise control system in a duct. To study the stability of the system, the model of delay differential equation is derived from the propagation of acoustic wave governed by a partial differential equation of hyperbolic type. Then, a simple feedback controller is designed, and its closed- loop stability is analyzed on the basis of the derived model of delay differential equation. The obtained criteria reveal the influence of the controller gain and the positions of a sensor and an actuator on the closed-loop stability. Finally, numerical simulations are presented to support the theoretical results.
基金supported by National Natural Science Foundation of China(61374065,61374002,61503225,61573215)the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe Natural Science Foundation of Shandong Province(ZR2015FQ003)
文摘The video game presented in this paper is a prey-predator game where two preys (human players) must avoid three predators (automated players) and must reach a location in the game field (the computer screen) called preys’ home. The game is a sequence of matches and the human players (preys) must cooperate in order to achieve the best perform- ance against their opponents (predators). The goal of the predators is to capture the preys, which are the predators try to have a “rendez vous” with the preys, using a small amount of the “resources” available to them. The score of the game is assigned following a set of rules to the prey team, not to the individual prey. In some situations the rules imply that to achieve the best score it is convenient for the prey team to sacrifice one of his components. The video game pursues two main purposes. The first one is to show how the closed loop solution of an optimal control problem and elementary sta- tistics can be used to generate (game) actors whose movements satisfy the laws of classical mechanics and whose be- haviour simulates a simple form of intelligence. The second one is “educational”, in fact the human players in order to be successful in the game must understand the restrictions to their movements posed by the laws of classical mechanics and must cooperate between themselves. The video game has been developed having in mind as players for children aged between five and thirteen years. These children playing the video game acquire an intuitive understanding of the basic laws of classical mechanics (Newton’s dynamical principle) and enjoy cooperating with their teammate. The video game has been experimented on a sample of a few dozen children. The children aged between five and eight years find the game amusing and after playing a few matches develop an intuitive understanding of the laws of classical me- chanics. They are able to cooperate in making fruitful decisions based on the positions of the preys (themselves), of the predators (their opponents) and on the physical limitations to the movements of the game actors. The interest in the game decreases when the age of the players increases. The game is too simple to interest a teenager. The game engine consists in the solution of an assignment problem, in the closed loop solution of an optimal control problem and in the adaptive choice of some parameters. At the beginning of each match, and when necessary during a match, an assign- ment problem is solved, that is the game engine chooses how to assign to the predators the preys to chase. The resulting assignment implies some cooperation among the predators and defines the optimal control problem used to compute the strategies of the predators during the match that follows. These strategies are determined as the closed loop solution of the optimal control problem considered and can be thought as a (first) form of artificial intelligence (AI) of the preda- tors. In the optimal control problem the preys and the predators are represented as point masses moving according to Newton’s dynamical principle under the action of friction forces and of active forces. The equations of motion of these point masses are the constraints of the control problem and are expressed through differential equations. The formula- tion of the decision process through optimal control and Newton’s dynamical principle allows us to develop a game where the effectiveness and the goals of the automated players can be changed during the game in an intuitive way sim- ply modifying the values of some parameters (i.e. mass, friction coefficient, ...). In a sequence of game matches the predators (automated players) have “personalities” that try to simulate human behaviour. The predator personalities are determined making an elementary statistical analysis of the points scored by the preys in the game matches played and consist in the adaptive choice of the value of a parameter (the mass) that appears in the differential equations that define the movements of the predators. The values taken by this parameter determine the behaviour of the predators and their effectiveness in chasing the preys. The predators personalities are a (second) form of AI based on elementary statistics that goes beyond the intelligence used to chase the preys in a match. In a sequence of matches the predators using this second form of AI adapt their behaviour to the preys’ behaviour. The video game can be downloaded from the website: http://www.ceri.uniroma1.it/ceri/zirilli/w10/.
文摘针对窄频差硅基环形波动陀螺动态性能差的问题,提出了一种基于比例积分微分-惯性环节(proportion integral differential-inertial element,PID-IE)的串联式相位校正检测闭环系统控制器。以硅微机械陀螺仪结构运动方程为基础建立了理想的窄频差U形弹性梁硅基环形波动陀螺仪的系统模型。通过对环形陀螺开环工作状态下的系统模型及其外围电路的传递函数和波特图分析,设计了一种基于PID-IE的检测闭环系统控制器。通过对其系统模型及外围电路时域仿真,验证了该检测闭环控制系统的可行性,通过仿真发现,加入该控制器后的陀螺输出稳定时间减少了50%,陀螺检测位移输出减小了2个数量级,基本实现了该陀螺的检测位移抑制。在模拟电路中实现了该检测闭环控制系统后,通过实验测试了陀螺检测闭环控制前后的各项性能指标。通过实验测试发现,实现闭环控制后,陀螺输出稳定时间约为0.15 s,陀螺检测位移在闭环工作状态下比开环工作状态减小了97%,陀螺的标度因数比检测开环提高了10倍,零偏及零偏不稳定性与检测开环相比分别提升了3倍和8倍,且闭环控制系统的工作带宽比开环工作带宽提高了30倍。
文摘The control problem for the multivariable and nonlinear dynamics of unmanned aerial vehicles and micro-satellites is solved with the use of a flatness-based control approach which is implemented in successive loops.The state-space model of(i)unmanned aerial vehicles and(ii)micro-satellites is separated into two subsystems,which are connected between them in cascading loops.Each one of these subsystems can be viewed independently as a differentially flat system and control about it can be performed with inversion of its dynamics as in the case of input–output linearized flat systems.The state variables of the second subsystem become virtual control inputs for the first subsystem.In turn,exogenous control inputs are applied to the first subsystem.The whole control method is implemented in two successive loops and its global stability properties are also proven through Lyapunov stability analysis.The validity of the control method is confirmed in two case studies:(a)control and trajectories tracking for the autonomous octocopter,(ii)control of the attitude dynamics of micro-satellites.
基金support provided by the National Key Research and Development Project of China(No.2017YFC0704100,under the title New Generation Intelligent Building Platform Techniques)Liaoning Natural Science Foundation Guidance Plan(No.20180551057)+1 种基金Dalian High-level Talent Innovation Support Program(Youth Technology Star)(No.2017RQ099)Fundamental Research Funds for the Central Universities(No.DUT20JC47)。
文摘Central air-conditioning systems predominantly operate under partial load conditions.The optimization of a differential pressure setpoint in the chilled water system of a central air-conditioning system leads to a more energy-efficient operation.Determining the differential pressure adjustment value based on the terminal user's real-time demand is one of the critical issues to be addressed during the optimal control process.Furthermore,the online application of the differential pressure setpoint optimization method needs to be considered,along with the stability of the system.This paper proposes a variable differential pressure reset method with an adaptive adjustment algorithm based on the Mamdani fuzzy model.The proposed method was compared with differential pressure reset methods with reference to the chilled water differential temperature,outdoor temperature,and linear model based on the adjustment algorithm.The energy-saving potential,temperature control effect,and avoidance of the most unfavorable thermodynamic loop effects of the four methods were investigated experimentally.The results indicated that,while satisfying the terminal user's energy supply demand and ensuring the avoidance of the most unfavorable thermodynamic loop,the proposed adaptive adjustment algorithm also decreased the differential pressure setpoint value by 25.1%—59.1%and achieved energy savings of 10.6%-45.0%.By monitoring the valve position and supply air temperature of each terminal user,the proposed method exhibited suitable online adaptability and could be flexibly applied to buildings with random load changes.