The microstructure characteristics of AlSiCuMg cast alloys were studied withdifferent Cu content and the gradual solution treatment by DSC, SEM, TEM and mechanical method. Themelting point of alpha (Al) + Si decreases...The microstructure characteristics of AlSiCuMg cast alloys were studied withdifferent Cu content and the gradual solution treatment by DSC, SEM, TEM and mechanical method. Themelting point of alpha (Al) + Si decreases and polynary eutectic phases with low melting point formwith increase of Cu content. Gradual solution treatment includes two steps: solution treating nearthe melting point of polynary eutectic phase to take it dissolve first, and then increasing solutiontemperature to take the remainder copper intermetallics dissolved into alpha (Al). Grain boundariesmelting can be avoided by gradual solution treatment, even the maximum solution temperature isabove final solidification point, and the age hardening response increases correspondingly展开更多
The precipitation behaviour during quenching of cast Al-7Si-0.3Mg aluminium alloy was investigated by DSC in the cooling rate range of 0.01 K/s to 3 K/s and by quenching dilatometry for higher rates. Two main precipit...The precipitation behaviour during quenching of cast Al-7Si-0.3Mg aluminium alloy was investigated by DSC in the cooling rate range of 0.01 K/s to 3 K/s and by quenching dilatometry for higher rates. Two main precipitation reactions were observed during cooling, a high temperature reaction starting almost directly with quenching from 540℃ and a low temperature reaction starting at about 400℃. Quenching with 3 K/s already significantly suppresses precipitation during quenching. Hardness after T6 ageing increases with increasing quenching rate, due to the increasing content of supersaturated solid solution. By dilatometry and hardness results the critical cooling rate can be estimated as about 60 K/s. Quenched Al-7Si-0.3Mg microstructures have been investigated by light microscopy. The microstructures consist of an aluminium-silicon eutectic structure, aluminium solid solution dendrites and precipitates inside the aluminium dendrites, depending on quenching rate.展开更多
基金This work is financially supported by the National Natural Science Foundation of China(No.50071028)the Shandong Natural Science Foundation of China (No.Z2001F02)
文摘The microstructure characteristics of AlSiCuMg cast alloys were studied withdifferent Cu content and the gradual solution treatment by DSC, SEM, TEM and mechanical method. Themelting point of alpha (Al) + Si decreases and polynary eutectic phases with low melting point formwith increase of Cu content. Gradual solution treatment includes two steps: solution treating nearthe melting point of polynary eutectic phase to take it dissolve first, and then increasing solutiontemperature to take the remainder copper intermetallics dissolved into alpha (Al). Grain boundariesmelting can be avoided by gradual solution treatment, even the maximum solution temperature isabove final solidification point, and the age hardening response increases correspondingly
文摘The precipitation behaviour during quenching of cast Al-7Si-0.3Mg aluminium alloy was investigated by DSC in the cooling rate range of 0.01 K/s to 3 K/s and by quenching dilatometry for higher rates. Two main precipitation reactions were observed during cooling, a high temperature reaction starting almost directly with quenching from 540℃ and a low temperature reaction starting at about 400℃. Quenching with 3 K/s already significantly suppresses precipitation during quenching. Hardness after T6 ageing increases with increasing quenching rate, due to the increasing content of supersaturated solid solution. By dilatometry and hardness results the critical cooling rate can be estimated as about 60 K/s. Quenched Al-7Si-0.3Mg microstructures have been investigated by light microscopy. The microstructures consist of an aluminium-silicon eutectic structure, aluminium solid solution dendrites and precipitates inside the aluminium dendrites, depending on quenching rate.