Cooperative jamming weapon-target assignment (CJWTA) problem is a key issue in electronic countermeasures (ECM). Some symbols which relevant to the CJWTA are defined firstly. Then, a formulation of jamming fitness...Cooperative jamming weapon-target assignment (CJWTA) problem is a key issue in electronic countermeasures (ECM). Some symbols which relevant to the CJWTA are defined firstly. Then, a formulation of jamming fitness is presented. Final y, a model of the CJWTA problem is constructed. In order to solve the CJWTA problem efficiently, a self-adaptive learning based discrete differential evolution (SLDDE) algorithm is proposed by introduc-ing a self-adaptive learning mechanism into the traditional discrete differential evolution algorithm. The SLDDE algorithm steers four candidate solution generation strategies simultaneously in the framework of the self-adaptive learning mechanism. Computa-tional simulations are conducted on ten test instances of CJWTA problem. The experimental results demonstrate that the proposed SLDDE algorithm not only can generate better results than only one strategy based discrete differential algorithms, but also outper-forms two algorithms which are proposed recently for the weapon-target assignment problems.展开更多
Most of the current evolutionary algorithms for constrained optimization algorithm are low computational efficiency. In order to improve efficiency, an improved differential evolution with shrinking space technique an...Most of the current evolutionary algorithms for constrained optimization algorithm are low computational efficiency. In order to improve efficiency, an improved differential evolution with shrinking space technique and adaptive trade-off model, named ATMDE, is proposed to solve constrained optimization problems. The proposed ATMDE algorithm employs an improved differential evolution as the search optimizer to generate new offspring individuals into evolutionary population. For the con- straints, the adaptive trade-off model as one of the most important constraint-handling techniques is employed to select better individuals to retain into the next population, which could effectively handle multiple constraints. Then the shrinking space technique is designed to shrink the search region according to feedback information in order to improve computational efficiency without losing accuracy. The improved DE algorithm introduces three different mutant strategies to generate different offspring into evo- lutionary population. Moreover, a new mutant strategy called "DE/rand/best/l" is constructed to generate new individuals according to the feasibility proportion ofcurrent population. Finally, the effectiveness of the pro- posed method is verified by a suite of benchmark functions and practical engineering problems. This research presents a constrained evolutionary algorithm with high efficiency and accuracy for constrained optimization problems.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(NZ2013306)the Funding of Jiangsu Innovation Program for Graduate Education(CXLX11 0203)
文摘Cooperative jamming weapon-target assignment (CJWTA) problem is a key issue in electronic countermeasures (ECM). Some symbols which relevant to the CJWTA are defined firstly. Then, a formulation of jamming fitness is presented. Final y, a model of the CJWTA problem is constructed. In order to solve the CJWTA problem efficiently, a self-adaptive learning based discrete differential evolution (SLDDE) algorithm is proposed by introduc-ing a self-adaptive learning mechanism into the traditional discrete differential evolution algorithm. The SLDDE algorithm steers four candidate solution generation strategies simultaneously in the framework of the self-adaptive learning mechanism. Computa-tional simulations are conducted on ten test instances of CJWTA problem. The experimental results demonstrate that the proposed SLDDE algorithm not only can generate better results than only one strategy based discrete differential algorithms, but also outper-forms two algorithms which are proposed recently for the weapon-target assignment problems.
基金Supported by National Science Foundation for Excellent Young Scholars,China(Grant No.51222502)Funds for Distinguished Young Scientists of Hunan Province,China(Grant No.14JJ1016)Major Program of National Natural Science Foundation of China(Grant No.51490662)
文摘Most of the current evolutionary algorithms for constrained optimization algorithm are low computational efficiency. In order to improve efficiency, an improved differential evolution with shrinking space technique and adaptive trade-off model, named ATMDE, is proposed to solve constrained optimization problems. The proposed ATMDE algorithm employs an improved differential evolution as the search optimizer to generate new offspring individuals into evolutionary population. For the con- straints, the adaptive trade-off model as one of the most important constraint-handling techniques is employed to select better individuals to retain into the next population, which could effectively handle multiple constraints. Then the shrinking space technique is designed to shrink the search region according to feedback information in order to improve computational efficiency without losing accuracy. The improved DE algorithm introduces three different mutant strategies to generate different offspring into evo- lutionary population. Moreover, a new mutant strategy called "DE/rand/best/l" is constructed to generate new individuals according to the feasibility proportion ofcurrent population. Finally, the effectiveness of the pro- posed method is verified by a suite of benchmark functions and practical engineering problems. This research presents a constrained evolutionary algorithm with high efficiency and accuracy for constrained optimization problems.